Angiomyolipomas:
Current evidence and its effect on management

Miles Mannas
David Liu MD FRCPC FSIR
UBC Departments of Urologic Sciences and Radiology
June 8, 2016

OBJECTIVES

• Epidemiology & Etiology
• Presentation
• Diagnosis
• Natural history
• Intervention options
• Intervention indications
Introduction

- Angiomyolipomas have 2 main clinical subtypes:
 - Sporadic
 - Tuberous Sclerosis Complex and/or Lymphangioleiomyomatosis

Prevalence of sporadic renal angiomyolipoma: a retrospective analysis of 61,389 in- and out-patients

- 49.7% women and 50.3% men consecutively scanned between Sep 1999 to Dec 2012
- Incidental finding
- Sporadic AML prevalence 0.44%
- 3:1 ratio F:M
Hormone receptor expression in renal angiomyolipoma: clinicopathologic correlation

- Retrospective
- 1970-2004 Mayo Clinic Nephrectomy registry
- 110 patients
- 90F, 20M
- 56% symptomatic

<table>
<thead>
<tr>
<th>Table, Patient demographics</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>90(81.8)</td>
</tr>
<tr>
<td>Male</td>
<td>20(18.2)</td>
</tr>
<tr>
<td>Symptoms at presentation</td>
<td></td>
</tr>
<tr>
<td>Painless flank/abdominal mass</td>
<td>3(2.7)</td>
</tr>
<tr>
<td>Discomfort</td>
<td>48(43.6)</td>
</tr>
<tr>
<td>Ipsilateral/contralateral side</td>
<td>15(13.6)</td>
</tr>
<tr>
<td>Rash, sweats, weight loss, fatigue, early safety</td>
<td></td>
</tr>
<tr>
<td>Gross hematuria</td>
<td>8(7.3)</td>
</tr>
<tr>
<td>Any symptoms at presentation Ipsilateral AMLs (n)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>97(88.2)</td>
</tr>
<tr>
<td>2</td>
<td>8(7.3)</td>
</tr>
<tr>
<td>3</td>
<td>2(1.8)</td>
</tr>
<tr>
<td>4</td>
<td>1(0.9)</td>
</tr>
<tr>
<td>5</td>
<td>1(0.9)</td>
</tr>
<tr>
<td>6</td>
<td>8(7.3)</td>
</tr>
<tr>
<td>Bilateral AMLs Histologic subtype of AML</td>
<td></td>
</tr>
<tr>
<td>Triphasic</td>
<td>77(70)</td>
</tr>
<tr>
<td>Lipomatous</td>
<td>20(18.2)</td>
</tr>
<tr>
<td>Leiomymomatous</td>
<td>7(6.4)</td>
</tr>
<tr>
<td>Epithelioid</td>
<td>4(3.6)</td>
</tr>
<tr>
<td>Typical</td>
<td>2(1.8)</td>
</tr>
</tbody>
</table>

TSC AML

- Tuberous Sclerotic Complex
 - Affects 1,600-10,000 births
- Mutations in TSC1 – hamartin - and TSC2 genes – tuberin
- Autosomal dominant
- Classic Dx includes triad of facial angiofibromas, intellectual disability, and epilepsy
TSC AML

Clinical correlates of renal angiomyolipoma subtypes in 209 patients: classic, fat poor, tuberous sclerosis associated and epithelioid
Presentation

• Clinical Manifestations
 – Flank pain
 – Palpable mass
 – Hematuria
 – Hemorrhage/Aneurysmal vessel rupture
 – Retroperitoneal hemorrhage (Wunderlich syndr)

The radiological diagnosis and treatment of renal angiomyolipoma—current status

• Ultrasound
 – Appearance overlaps with RCC in up to ~12%
 • 21-33% in RCC <3cm
 – strongly hyper-reflective lesion with acoustic shadowing

• Computed tomography
 – 4-5% unable to detect intra-tumoral fat
 • Up to 33% in TSC
 – hyper-attenuating, homogeneously enhanced masses with prolonged enhancement

• MRI
 – Chemical shift MRI T1-weighted and T2-weighted
 – India ink artifacts
 – Similar sensitivity to CT, with improved specificity

Role of MRI in indeterminate renal mass: diagnostic accuracy and impact on clinical decision making

Treatment

- Active surveillance
- Medical management
- Nephron sparing
 - Partial nephrectomy
 - Embolization
 - RFA
 - Cryo
- Radical nephrectomy

Table 1. Patient and tumor characteristics according to CT diagnosis

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>120</td>
<td>78 (65.0)</td>
<td>25 (20.0)</td>
<td>17 (14.2)</td>
</tr>
<tr>
<td>Median age (range), years</td>
<td>66 (26-85)</td>
<td>55 (28-85)</td>
<td>52 (29-74)</td>
<td>53 (28-85)</td>
</tr>
<tr>
<td>Gender (%)</td>
<td>76 (60.0)</td>
<td>55 (68.0)</td>
<td>12 (48.0)</td>
<td>11 (66.4)</td>
</tr>
<tr>
<td>Male</td>
<td>44 (40.0)</td>
<td>21 (32.0)</td>
<td>13 (52.0)</td>
<td>6 (35.3)</td>
</tr>
<tr>
<td>Female</td>
<td>16.4 ± 10.9</td>
<td>18.5 ± 9.9</td>
<td>18.2 ± 13.8</td>
<td>14.0 ± 10.3</td>
</tr>
<tr>
<td>Mean tumor size (range), cm</td>
<td>1.4 (0.5-8.5)</td>
<td>1.4 (0.5-8.5)</td>
<td>1.8 (0.5-4.6)</td>
<td>1.5 (0.5-4.6)</td>
</tr>
<tr>
<td>Size category (%)</td>
<td><2</td>
<td>40 (55.1)</td>
<td>14 (56.0)</td>
<td>11 (66.4)</td>
</tr>
<tr>
<td>2 to <3</td>
<td>22 (18.5)</td>
<td>15 (19.2)</td>
<td>4 (16.0)</td>
<td>3 (17.6)</td>
</tr>
<tr>
<td>3 to <4</td>
<td>17 (14.2)</td>
<td>13 (16.7)</td>
<td>4 (16.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>4 or greater</td>
<td>13 (10.8)</td>
<td>7 (9.0)</td>
<td>3 (12.0)</td>
<td>3 (17.6)</td>
</tr>
<tr>
<td>Characteristic</td>
<td>Group 1</td>
<td>Group 2</td>
<td>Group 3</td>
<td>p value</td>
</tr>
<tr>
<td>Type of tumor (%)</td>
<td>Solid</td>
<td>105 (87.5)</td>
<td>70 (99.7)</td>
<td>23 (92.0)</td>
</tr>
<tr>
<td>Cystic</td>
<td>15 (12.5)</td>
<td>8 (10.3)</td>
<td>2 (8.0)</td>
<td>5 (21.6)</td>
</tr>
<tr>
<td>Pathological diagnosis (%)</td>
<td>Yes</td>
<td>89 (74.2)</td>
<td>62 (79.4)</td>
<td>21 (84.4)</td>
</tr>
<tr>
<td>No</td>
<td>31 (25.8)</td>
<td>16 (20.6)</td>
<td>4 (16.0)</td>
<td>11 (66.4)</td>
</tr>
<tr>
<td>Total diagnosis (%)</td>
<td>RCC</td>
<td>73 (60.6)</td>
<td>57 (73.3)</td>
<td>12 (48.0)</td>
</tr>
<tr>
<td>Angiomyolipoma</td>
<td>32 (26.7)</td>
<td>14 (18.0)</td>
<td>9 (36.0)</td>
<td>5 (23.3)</td>
</tr>
<tr>
<td>Oncocytoma</td>
<td>5 (4.2)</td>
<td>3 (3.8)</td>
<td>2 (8.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Complicated cyst</td>
<td>10 (8.3)</td>
<td>4 (5.3)</td>
<td>2 (8.0)</td>
<td>4 (23.5)</td>
</tr>
</tbody>
</table>
Active Surveillance for renal angiomyolipoma: outcomes and factors predictive of delayed intervention

- Retrospective
- Glickman Urological and Kidney Institute, and Imaging Institute, Cleveland Clinic
- 400 patients
- Database search including patients with the final diagnosis of renal mass
- AML identified by fat content on CT scan
- 270 treated, 130 active surveillance (10 TSC)
- 17 required delayed treatment
- Follow-up physical exam and imaging at 6mo, 12mo and then annually

Active Surveillance for renal angiomyolipoma: outcomes and factors predictive of delayed intervention

Trends of presentation and clinical outcome of treated renal angiomyolipoma

- Retrospective between Mar ‘98 & Oct ‘08
- Yonsei University College of Medicine, Seoul
- AML identified by CT scan fat component or pathology after surgery
- 254 patients
- 129 treated
Trends of presentation and clinical outcome of treated renal angiomyolipoma

Table 2. Differences of Patient Characteristics between Sporadic and Tuberous Sclerosis (TS)-Associated AML

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Sporadic AML (n = 117)</th>
<th>TS-associated AML (n = 12)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>52.6 ± 12.1</td>
<td>30.1 ± 12.1</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>No. of female (%)</td>
<td>92 (78.6)</td>
<td>8 (66.7)</td>
<td>0.273</td>
</tr>
<tr>
<td>Mean tumor size (cm)</td>
<td>3.7 ± 2.5</td>
<td>7.6 ± 4.3</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Size range (cm)</td>
<td>0.8 - 11.7</td>
<td>1.1 - 16</td>
<td></td>
</tr>
<tr>
<td>Symptomatic at presentation (%)</td>
<td>21 (17.9)</td>
<td>11 (91.7)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Multiple (%)</td>
<td>8 (6.8)</td>
<td>9 (75.0)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Bilateral (%)</td>
<td>3 (2.6)</td>
<td>8 (66.7)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Radiologic appearance (%)</td>
<td></td>
<td></td>
<td>0.238</td>
</tr>
<tr>
<td>Classic AML</td>
<td>78 (66.7)</td>
<td>10 (83.3)</td>
<td></td>
</tr>
<tr>
<td>Fat poor AML</td>
<td>39 (33.3)</td>
<td>2 (16.7)</td>
<td></td>
</tr>
<tr>
<td>Surgical intervention (%)</td>
<td>96 (82.1)</td>
<td>7 (58.3)</td>
<td>0.002</td>
</tr>
<tr>
<td>Nephron sparing surgery (%)</td>
<td>67 (69.7)</td>
<td>1 (14.3)</td>
<td></td>
</tr>
<tr>
<td>Radical nephrectomy (%)</td>
<td>29 (30.3)</td>
<td>6 (85.8)</td>
<td></td>
</tr>
<tr>
<td>Embolization (%)</td>
<td>21 (17.9)</td>
<td>5 (41.7)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Lymph node involvement (%)</td>
<td>5 (4.3)</td>
<td>4 (33.3)</td>
<td>< 0.001*</td>
</tr>
</tbody>
</table>

Table 3. Differences of Patient Characteristics According to Tumor Size

<table>
<thead>
<tr>
<th>Variable</th>
<th>< 4 cm</th>
<th>≥ 4 cm</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>82</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Age at presentation (yrs)</td>
<td>52.4 ± 12.7</td>
<td>47.1 ± 14.8</td>
<td>0.034*</td>
</tr>
<tr>
<td>Mean tumor size (cm)</td>
<td>2.2 ± 0.8</td>
<td>7.3 ± 2.5</td>
<td></td>
</tr>
<tr>
<td>Size range (cm)</td>
<td>0.8 - 3.7</td>
<td>4 - 16</td>
<td></td>
</tr>
<tr>
<td>Symptomatic at presentation (%)</td>
<td>12 (14.6)</td>
<td>20 (42.5)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Tuberous sclerosis complex (%)</td>
<td>3 (3.6)</td>
<td>9 (19.1)</td>
<td>0.004</td>
</tr>
<tr>
<td>Surgical intervention (%)</td>
<td>66 (80.0)</td>
<td>32 (68.0)</td>
<td>< 0.001*</td>
</tr>
<tr>
<td>Nephron sparing surgery (%)</td>
<td>61 (92.4)</td>
<td>6 (18.8)</td>
<td></td>
</tr>
<tr>
<td>Radical nephrectomy (%)</td>
<td>5 (7.6)</td>
<td>26 (81.2)</td>
<td></td>
</tr>
<tr>
<td>Embolization (%)</td>
<td>16 (19.5)</td>
<td>15 (31.9)</td>
<td>< 0.001*</td>
</tr>
</tbody>
</table>
Natural history of renal angiomyolipoma (AML):
most patients with large AMLs >4cm can be
offered active surveillance as an initial
management strategy

- Retrospective
- Princess Margaret cancer centre from 2002-2013
- Patients undergoing abdominal imaging for any reason
- AMLs identified by report indicating fat in lesion
- 2741 patients identified, 447 patients with 582 tumors followed for median 43
months
- 2294 had fewer than 3 images, only 13 had intervention (0.56%)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Category</th>
<th>No intervention, n (%)</th>
<th>Intervention, n (%)</th>
<th>Total, n (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis, yr</td>
<td>Median</td>
<td>58.1 (range)</td>
<td>69 (20-66)</td>
<td>58.1 (18.5-90.1)</td>
<td>0.002</td>
</tr>
<tr>
<td>Gender</td>
<td>Female</td>
<td>336 (79.0)</td>
<td>22 (88)</td>
<td>358 (85.1)</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>400 (95.5)</td>
<td>5 (24)</td>
<td>405 (96.3)</td>
<td>0.0001</td>
</tr>
<tr>
<td>TSC status</td>
<td>Known</td>
<td>411 (97.5)</td>
<td>10 (76)</td>
<td>421 (94.2)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>11 (2.7)</td>
<td>5 (24)</td>
<td>17 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Incidental</td>
<td>394 (91)</td>
<td>12 (48)</td>
<td>406 (90.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Symptomatic</td>
<td>20 (7)</td>
<td>13 (52)</td>
<td>43 (93)</td>
<td></td>
</tr>
<tr>
<td>Initial size</td>
<td><4 cm</td>
<td>393 (91.1)</td>
<td>7 (28)</td>
<td>400 (95.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>>4 cm</td>
<td>30 (6.8)</td>
<td>13 (77)</td>
<td>43 (93)</td>
<td></td>
</tr>
<tr>
<td>Growth rate</td>
<td>>0.25 cm/yr</td>
<td>388 (92)</td>
<td>17 (77)</td>
<td>406 (91.8)</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>>0.35 cm/yr</td>
<td>33 (8)</td>
<td>5 (21)</td>
<td>38 (8.2)</td>
<td></td>
</tr>
</tbody>
</table>

TSC = tuberous sclerosis complex.

[Table 4 - Demographic comparison of 422 patients who did not have intervention with 25 patients who had an intervention]

Renal angiomyolipoma: relationships between tumor size, aneurysm formation and rupture

- Retrospective series of 23 patients
- Aug 1990 – May 2001
- Examined with CT and angiography

Microaneurysms in renal angiomyolipomas: can clinical and computed tomography features predict their presence and size?

- Retrospective
- Two French hospitals’ records
- Patients undergoing RAE between Jan 2005 and Feb 2015
- Preoperative CT imaging
- 31 patients
 - Total of 54 AMLs
 - 15 TSC and/or LAM
 - 5 patients referred for urgent RAE due to hemorrhage (2 TSC/LAM)
Treatment

- mTOR inhibitors
- Ablation
 - RFA
 - Cryo
 - Microwave
- Embolization
- NSS
- Radical

Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial

- Double-blind, placebo-controlled
- Phase 3 trial
- Patients aged 18 years or older with at least one angiomyolipoma 3 cm or larger in its longest diameter
- Assigned in a 2:1 fashion to receive either everolimus or placebo
Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial

- Angiomyolipoma response rates by subgroup
- The difference in response rates is everolimus minus placebo
- Best percentage change from baseline in the sum of volumes of target angiomyolipoma lesions

Each bar represents one patient

<table>
<thead>
<tr>
<th>Difference in response rate (95% CI)</th>
<th>Everolimus response rate (95% CI)</th>
<th>Placebo response rate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients (n=133)</td>
<td>45 (34-58)</td>
<td>45 (37-54)</td>
</tr>
<tr>
<td>Male (n=77)</td>
<td>41 (30-54)</td>
<td>43 (34-54)</td>
</tr>
<tr>
<td>Female (n=56)</td>
<td>45 (33-58)</td>
<td>45 (37-54)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td><10 years (n=25)</td>
<td>45 (38-58)</td>
<td>45 (37-54)</td>
</tr>
<tr>
<td>≥10 years (n=8)</td>
<td>46 (38-53)</td>
<td>44 (34-54)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White (n=99)</td>
<td>45 (34-58)</td>
<td>44 (34-54)</td>
</tr>
<tr>
<td>Non-white (n=34)</td>
<td>46 (38-53)</td>
<td>45 (34-54)</td>
</tr>
</tbody>
</table>

Sirolimus Therapy for Angiomyolipoma in Tuberous Sclerosis and Sporadic Lymphangioleiomyomatosis: A Phase 2 Trial

- Prospective multicentre
- Phase 2 study
- Conducted in UK and Switzerland
- Patient age 18-65 years of age
- 1 AML 2cm or more in diameter
- 2 years of sirolimus treatment
- At baseline, angiomyolipomas were visualized by abdominal MRI without contrast media and measured
Sirolimus Therapy for Angiomyolipoma in Tuberous Sclerosis and Sporadic Lymphangioleiomyomatosis: A Phase 2 Trial

- Of 23 angiomyolipomas evaluated at 24 months, 21 were smaller and 2 were unchanged
- Overall response rate by RECIST criteria was 50% (8 of 16) and in the per protocol group it was 80% (8 of 10)
- At 24 months, a partial response was present in 4 of 10 patients (40%) remaining in the trial

Interventional Radiology

David Liu MD FRCP(C) ABR(D) CAQ(IR) FSIR
Clinical Associate Professor
Angiography and Interventional Section
Department of Radiology
Faculty of Medicine
University of British Columbia
Vancouver BC Canada
Embolization of AML

• Treatment of choice with acute bleeding
• Rationale: Decrease vascularity, secondary ischemic effects on parenchyma
• No size limitation, anatomy generally doesn’t matter
• Doesn’t interfere with other treatments
• Minimally invasive, wide expertise

Embolization (cont.)

• Meta-analysis n=31 studies, 524 patients
• Post embo syndrome 36%, other complications 7%. No deaths
• Unplanned re-embo or surgery 21% (revascularization, bleeding, symptoms)

Murray TE, et al. J Urol 2015;194

Courtesy Dr Fred Lee
C7 - KUB

If the patient does not speak English, an interpreter MUST accompany the patient.

PERTINENT HISTORY / MEDICATIONS:

- UGI steadies d-lactic flux gran.
- urine 200 RBC/mL
- likely metastasis
- stage of location?
Ablation for AML: Rationale

- Stakes are different than for RCC
- Destroy blood vessels to decrease bleed risk
- Destroy parenchyma, no potential for revascularization (but getting every cell not critical)
- Percutaneous-avoid surgery, etc.
- Not for all patients: tumor location, size
- Cryoablation, RF, and MW have all been tried with success

Courtesy Dr Fred Lee
Ablation for AML

- Studies are small, all positive
 - Cryoablation n=3 (perc) n=7 (lap)
 - RF ablation n=15 (perc + lap)
 - Castle, et al. BJUI 2011;109
 - MW ablation n=14 (perc)

Ablation technologies

- Not enough data to declare one superior to others
- All effected by intratumoral fat (insulator): need to treat harder than for RCC
- We use MW due to deep penetration into tissue, hotter temps
MW of AML, UW Results

- N=11, mean diameter 3.4 cm, 15.5 mo f/u
- Two patients failed embolization
- Hydrodissection used in all cases
- eGFR 95 (pre) to 87 (post), p=0.15
- No complications, no bleeds
- Volume: -44.3% decrease
- Enhancement (HU): 44.1 (pre) vs. 14.6 (post)

Cristescu M, et al. CVIR 2015;epub

Technique: CT+US monitoring

Courtesy Dr Fred Lee
Devascularization by MW

Volume change: -61%
Enhancement (pre)=74 HU vs. 6.2 (post)

Technique: Target feeding vessel

Feeding vessel

Courtesy Dr Fred Lee
Treated vs. untreated AML

Diameter: 4.9 vs. 2.4 cm
Volume: -90%

Diameter: 4.3 vs. 5.2 cm
Volume: +21%

Courtesy Dr Fred Lee

Nephron Sparing Surgery Associated With Better Survival Than Radical Nephrectomy in Patients Treated for Unforeseen Benign Renal Tumors

- Retrospective cohort
- Jan 1, '05 – Dec 31, '12
- 506 consecutive patients
 - 256 men and 250 women
 - 58% Oncocytoma, 24% AML, 11% Cystic and 8% diverse benign path
Nephron Sparing Surgery Associated With Better Survival Than Radical Nephrectomy in Patients Treated for Unforeseen Benign Renal Tumors

Treatment of angiomyolipoma at a tertiary care centre: the decision between surgery and angioembolization

Indications for Treatment

- Wunderlich syndrome
- Hemorrhage/Aneurysm rupture
- Aneurysm size
- Suspicion of malignancy
- Symptomatic
- Size
- Multiplicity
- Epitheloid variant
- Young female of reproductive age*

Conclusion

- AML are uncommon, though not rare
- Can present as diagnostic dilemmas, as imaging imperfect for differentiating AML from RCC
- Our understanding of the Natural history is still evolving but appearing relatively benign course in absence of RF for rupture
- Treatment is advancing
 - Further studies required for differentiating role for each modality
- Guidelines required
 - With focus on when to surveil, when treatment is required and with which modality
Acknowlledgements

• Dr. David Liu
• Dr. Ryan Paterson