Endometriosis of the Urinary Tract

COLIN LUNDEEN AND DR. PAUL YONG
SEP 20, 2017

Objectives

- Review the background, epidemiology and pathophysiology of urinary tract endometriosis (UTE)
- Outline the clinical presentation and workup of UTE
- Present the treatment options for UTE including hormonal and surgical interventions
- Highlight operative cases from VGH involving collaboration between Gynecology and Urology
Background

Endometriosis: the presence of endometrial glands and stroma outside of the uterus
- Prevalence: 6-10% in women of reproductive age, up to 50% among women with infertility
- Three main categories:
 - Ovarian endometriosis
 - Superficial peritoneal endometriosis
 - Deep infiltrating endometriosis (DIE)

Deep infiltrating endometriosis (affects ~1% of women of reproductive age)
- Infiltrates the peritoneum by > 5mm
- Common sites include: bladder, ureter, rectovaginal septum, rectum, retrosigmoid colon, uterine ligaments, vagina

Epidemiology

- 1% of patients with pelvic endometriosis have urinary tract involvement
- 20-50% of patients with Deep Infiltrating Endometriosis have urinary tract involvement
- Prevalence at specific sites:
 - Bladder 70-85%
 - Kidney 4%
 - Urethra 2%
 - Ureter 9-23%
 - Extrinsic (80%) – submucosa or adventitia
 - Intrinsic (20%) – mucosa or muscularis propria
- Risk factors:
 - Nulliparity, prolonged exposure to endogenous estrogens (early menarche, late menopause), short menstrual cycles (<27 days), family history, heavy menstrual bleeding, dysmenorrhea, obstruction of menstrual outflow, height > 68in, low BMI, high consumption of trans unsaturated fats
Pathophysiology

Theories include:

• Retrograde menstruation
 • Most lesions are in the pelvis, in dependent areas – lower ureter more affected than upper ureter
 • Left side deposits are more common – “anatomic sheltering” by the sigmoid colon
 • Bladder is involved far less when uterus is retroverted

• Altered immunity
 • Dysregulation of immune system leads to poor clearance of ectopic endometrial cells
 • Higher incidence in patients with auto-immune and atopic diseases

• Coelomic metaplasia - Normal peritoneum transforms into endometrial tissue

• Mullerian rest transformation* – stimulated by estrogen exposure

• Benign metastasis – hematological/lymphatic spread

• Iatrogenic – port site and scar site lesions

• Genetic modification – early studies only with no definitive findings

Nezhat et al, Nature Rev Urol 2017

Biological Alterations in DIE

• Upregulation of estrogen biosynthesis

• Decreased inactivation of estrogen

• Alteration of estrogen and progesterone receptors
 • Leads to resistance of endometrial tissue to progesterone’s anti-proliferative effect

• Higher expression of invasive mechanisms (matrix metalloproteinases and activins)

• Increased expression of neuroangiogenesis genes
 • Vascular endothelial growth factor (VEGF), Nerve growth factor (NGF),

Ferrero et al, Fertil Steril 2015
Pain in DIE

- Pain in DIE is not simply from compression/mass effect
- Lesions are directly innervated by sensory and sympathetic fibers
- Increased number of activated mast cells
 - Cytokine release
 - Immune mediated inflammatory response
- Increased nerve density
 - correlates directly to severity of pain
 - Upregulation of nerve growth factor (NGF) by local inflammatory response

Ferrero et al, Fertil Steril 2015

Presentation

- Severe pain: >95%\(^1\)
 - Dysmenorrhea, deep dyspareunia, non-menstrual pelvic pain
- Prevalence of LUTS in UTE is unclear: 2-77% in reported studies\(^2\)
 - Dysuria: 21-69%
 - Hematuria: 0-35%
- Ureteral lesions are often asymptomatic
 - Silent loss of renal function in 25-50%\(^3\)
 - Often discovered incidentally during laparoscopy
 - Rectovaginal lesions >3cm predict ureteral lesions\(^4\) (OR 3.92, 95% CI 1.84-8.34, P<0.001)
- Significant crossover between UTE and other chronic pain syndromes
 - Overactive bladder, interstitial cystitis/chronic pelvic pain, bladder cancer
- Bowel involvement may lead to associated symptoms
 - Constipation, dyschezia, menstrual diarrhea, menstrual hematochezia

1 Berlanda et al, Eur J Obstet Gynecol Reprod Bio 2017
2 Maggiore et al, Eur Urol 2017
4 Knabben et al, Fertil Steril 2015
Evaluation

- History
 - Symptoms, localization of pain, cyclical nature, questionnaires
- Physical Exam
 - Bimanual exam
- Laboratory Investigations
 - CBC, Creatinine, Urinalysis/culture
- Imaging
 - Ultrasound
 - MRI
 - IVP
- Procedures
 - Laparoscopy
 - Cystoscopy
 - Ureteroscopy
Evaluation: Bladder

- Transvaginal Ultrasound
 - Sensitivity 0.62 (95% CI 0.4-0.8)
 - Specificity 1 (95% CI 0.97-1)
 - Positive likelihood ratio 208.4 (95% CI 21-2066)
 - Able to more accurately detect distance from lesion to ureteric orifice than MRI
 - Less expensive, easier access than MRI

- MRI
 - Sensitivity 0.64 (95% CI 0.48-0.77)
 - Specificity 0.98 (95% CI 0.96-0.99)
 - Improved resolution, better tissue characterization, better multiplanar capability

1 Guerriero et al. Ultrasound obstet gynecol 2015
2 Thonnon et al. J Minim Invas Gynecol 2015
3 Medeiros et al. Arch Gynecol Obstet 2015
4 Mallampati et al. MRI Clin J N Am 2004

Evaluation: Bladder

- Cystoscopy
 - Usually normal due to majority of lesions not invading the mucosa
 - Best to perform immediately before or during menstruation
 - Utilized preoperatively to determine distance from lesion to ureteric orifice

- Urodynamics
 - Increased bladder sensation and painful bladder filling comparing BE to other DIE lesions

Panel et al. Int Urogynecol J 2016
Evaluation – Bladder Summary

<table>
<thead>
<tr>
<th>Approach</th>
<th>Pros</th>
<th>Cons</th>
<th>Comments</th>
<th>LE</th>
<th>GR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical examination</td>
<td>Noninvasive</td>
<td>Experience required to achieve accuracy</td>
<td>Allows detection of a bladder nodule that may be painful (53–100%)</td>
<td>Ib</td>
<td>B</td>
</tr>
<tr>
<td>Questionnaires</td>
<td>Cost-effective, accurate for BE diagnosis, detailed description of LUTS</td>
<td>Time-consuming</td>
<td>Can be useful in improving diagnosis of and monitoring changes in LUTS after medical/surgical treatment</td>
<td>Ib</td>
<td></td>
</tr>
<tr>
<td>TVS</td>
<td>Highly accurate, noninvasive, cost-effective, estimation of the distance between ureteral orifices and nodule borders</td>
<td>–</td>
<td>First-line technique for BE diagnosis</td>
<td>la</td>
<td>A</td>
</tr>
<tr>
<td>MRI</td>
<td>Highly accurate</td>
<td>Not-cost-effective</td>
<td>Should not be routinely performed in clinical practice</td>
<td>la</td>
<td>A</td>
</tr>
<tr>
<td>Cystoscopy</td>
<td>Cost-effective, estimation of the distance between ureteral orifices and nodule borders, biopsy</td>
<td>Invasive</td>
<td>Should not be performed routinely, only in cases of suspicion of malignancy or to estimate the distance between ureteral orifices and nodule borders if not clearly evaluable by TVS</td>
<td>IV</td>
<td>D</td>
</tr>
<tr>
<td>Urodynamics</td>
<td>Objective assessment of lower urinary tract changes</td>
<td>Invasive, time-consuming</td>
<td>Should only be used for scientific purposes</td>
<td>III</td>
<td>C</td>
</tr>
</tbody>
</table>

Maggiore et al, Eur Urol 2017

Evaluation: Ureter

- Ultrasound
 - Able to detect hydronephrosis/hydroureter

- MRI
 - Sensitivity and specificity comparable to laparoscopy for detecting intrinsic ureteric lesions¹
 - “ideal” imaging modality for urinary tract involvement²

- IVP
 - Traditional imaging modality
 - Can provide location of lesion, degree of stenosis, presence of hydronephrosis
 - Retrograde pyelogram can be substituted if IV contrast is contraindicated

- Nuclear medicine
 - MAG-3 or DMSA to look at split function – is the kidney worth salvaging?

- Ureteroscopy
 - Only useful for diagnosis of intrinsic ureteral lesions

¹ Sillou et al. Diagn Interv Imaging 2015
² Maccagnano et al. Urol Int 2013
Evaluation: Ureter

Figure 1

Correlation between the size of the rectovaginal nodule and the probability of ureteral involvement. [Kranzler, Urinary tract endosonography. Am J Obstet Gynecol 2015.]

Table 2. Comparison of patients requiring and not requiring urologic surgical intervention

<table>
<thead>
<tr>
<th>Preventing symptoms</th>
<th>Extensive Surgical Intervention (n = 15)</th>
<th>Minimal or No Surgical Intervention (n = 67)</th>
<th>OR (P Value, 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urinary symptoms</td>
<td>5 (33.3)</td>
<td>4 (6.0)</td>
<td>7.88 (P = .002, 1.80–34.40)</td>
</tr>
<tr>
<td>Urinary urgency</td>
<td>1 (6.7)</td>
<td>1 (1.5)</td>
<td>0.40 (P = .469, 0.057–3.314)</td>
</tr>
<tr>
<td>Oligomenorrhea</td>
<td>3 (20.0)</td>
<td>17 (25.4)</td>
<td>0.74 (P = .661, 0.192–2.92)</td>
</tr>
<tr>
<td>Pelvic pain</td>
<td>5 (33.3)</td>
<td>26 (38.6)</td>
<td>0.79 (P = .693, 0.242–2.57)</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>6 (40.0)</td>
<td>33 (48.6)</td>
<td>0.77 (P = .690, 0.252–2.42)</td>
</tr>
<tr>
<td>Vaginal pain</td>
<td>5 (33.3)</td>
<td>7 (10.4)</td>
<td>4.29 (P = .023, 1.14–14.18)</td>
</tr>
<tr>
<td>Bock pain</td>
<td>0 (0.0)</td>
<td>2 (3.0)</td>
<td>0.00 (P = .915, 0.000–NA)</td>
</tr>
<tr>
<td>Abnormal uterine bleeding</td>
<td>3 (20.0)</td>
<td>21 (31.3)</td>
<td>0.55 (P = .383, 0.14–2.15)</td>
</tr>
<tr>
<td>Asymptomatic</td>
<td>0 (0.0)</td>
<td>6 (9.0)</td>
<td>0.00 (P = .402, 0.000–NA)</td>
</tr>
<tr>
<td>Physical examination findings</td>
<td>Abdomen/Pelvis tender to palpation</td>
<td>3 (20.0%)</td>
<td>0.48 (P = .281, 0.12–2.87)</td>
</tr>
<tr>
<td>Abdomen/Pelvis mass</td>
<td>2 (13.3%)</td>
<td>26 (38.8%)</td>
<td>0.24 (P = .061, 0.05–1.63)</td>
</tr>
<tr>
<td>Laboratory findings</td>
<td>Mean ± SD (range)</td>
<td>Mean ± SD (range)</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>0.92 ± 0.13 (0.0–1.33)</td>
<td>0.76 ± 0.13 (0.0–1.31)</td>
<td>P = .20</td>
</tr>
<tr>
<td>Average WBC</td>
<td>9.07 ± 4.62 (2.9–19.0)</td>
<td>7.80 ± 2.36 (3.6–16.5)</td>
<td>P = .14</td>
</tr>
<tr>
<td>Imaging findings</td>
<td>Abdominopelvic mass</td>
<td>2 (13.3%)</td>
<td>0.24 (P = .061, 0.05–1.63)</td>
</tr>
<tr>
<td>Hydronephrosis</td>
<td>13 (86.7%)</td>
<td>5 (7.8%)</td>
<td>76.70 (P = .001, 11.38–439.70)</td>
</tr>
</tbody>
</table>

O2 confidence interval; Cr, creatinine; OR, odds ratio; WBC, white blood cell count.

* Percentage calculation based on 64 patients as 3 had unknown preoperative hydronephrosis status.

Gennaro et al, UROLOGY 2017
Evaluation: Ureter

Table 2

Proposal for a classification of ureteral endometriosis.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Peritoneal endometriosis overlying the ureter</td>
</tr>
<tr>
<td>1</td>
<td>Retroperitoneal endometriosis with entanglement of the ureter but no dilatation</td>
</tr>
<tr>
<td>2</td>
<td>Dilatation of the ureter and/or hydronephrosis without functional impairment (urodynamic no relevant obstruction)</td>
</tr>
<tr>
<td>3</td>
<td>Urodynamically relevant obstruction with symmetrical renal split clearance in renal furosemide scintigraphy and normal total clearance</td>
</tr>
<tr>
<td>4</td>
<td>Urodynamically relevant obstruction with impaired split clearance in renal furosemide scintigraphy or impaired total clearance</td>
</tr>
<tr>
<td>5</td>
<td>Silent kidney</td>
</tr>
</tbody>
</table>

Medical Management

<table>
<thead>
<tr>
<th>Variable</th>
<th>Pros</th>
<th>Cons</th>
<th>Comments</th>
<th>Grade of recommendations for DEE treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsteroidal anti-inflammatory drugs</td>
<td>Cost-effective; Not contraceptive</td>
<td>No cytostatic effect; Only one randomized controlled trial has been published</td>
<td>N/A; No studies available</td>
<td>A</td>
</tr>
<tr>
<td>Progestogens</td>
<td>Cost-effective; Effective in improving pain symptoms Available in different formulations (oral, intravaginal, implant); Wall tolerated</td>
<td>Contraceptive for women deciding to conceive</td>
<td>First-line therapy</td>
<td>A</td>
</tr>
<tr>
<td>Combined hormonal contraceptives</td>
<td>Cost-effective; Effective in improving pain symptoms Available in different formulations (oral, vaginal, cutaneous); Wall tolerated</td>
<td>Contraceptive for women deciding to conceive</td>
<td>First-line therapy</td>
<td>A</td>
</tr>
<tr>
<td>Gonadotropin releasing hormone agonists</td>
<td>Highly effective in improving pain symptoms Available in different formulations (intrasyn, IN, SC)</td>
<td>Short-term use (6 mo) without add-back therapy; Hypogonadal AI less; Expensive; Contraceptive for women deciding to conceive</td>
<td>Second-line therapy</td>
<td>B</td>
</tr>
<tr>
<td>Danazol</td>
<td>Cost-effective; Effective in improving pain symptoms</td>
<td>Androgenic AI, used for barrier contraception</td>
<td>Low popularity due to their androgenic AIs</td>
<td>B</td>
</tr>
<tr>
<td>Aromatase inhibitors</td>
<td>Generally effective in improving pain symptoms in combination with hormonal contraceptives, progestogens, or GnRH agonists</td>
<td>Off-label; High rate of hypogonadal AIs; Short-term use (6 mo)</td>
<td>To be used only in patients refractory to conventional therapies and in the setting of scientific research</td>
<td>B</td>
</tr>
<tr>
<td>Surgery</td>
<td>Highly effective in improving pain symptoms</td>
<td>Intravaginal complications; Expensive</td>
<td>To be considered in patients refractory to hormonal treatment; Second-/third-line therapy</td>
<td>A</td>
</tr>
</tbody>
</table>

Ferrero et al. Fertil Steril 2015
Medical Management: Volume reduction

Ferrero et al. Arch Gynecol Obstet 2013

Medical Management: Cystoscopic Findings

Fedele et al. Fertil Steril 2008
Medical Management: Volume, Pain and Hematuria

![Medical Management: Ureteric Obstruction](image)

Table 2. Clinical and US data at the beginning of the treatment and at follow-up in the six patients.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronic pain (total score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 0</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Month 3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Month 12</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Bladder nodule volume (cm^3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 0</td>
<td>5.49</td>
<td>11.76</td>
<td>1.67</td>
<td>4.18</td>
<td>2.87</td>
<td>7.32</td>
</tr>
<tr>
<td>Month 3</td>
<td>2.51</td>
<td>8.02</td>
<td>1.4</td>
<td>3.54</td>
<td>1.89</td>
<td>4.58</td>
</tr>
<tr>
<td>Month 12</td>
<td>2.61</td>
<td>7.85</td>
<td>1.5</td>
<td>3.83</td>
<td>2.10</td>
<td>3.85</td>
</tr>
<tr>
<td>Dysuria (Y/N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 0</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Month 3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Month 12</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Haematuria (Y/N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time 0</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Month 3</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Month 12</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>

Angione et al, Gynecol Endocrinol 2015
Medical Management: Side Effects

<table>
<thead>
<tr>
<th>Treatment (reference)</th>
<th>Side Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progestogens</td>
<td></td>
</tr>
<tr>
<td>Methylenedioxynestosterone acetate (9–100)</td>
<td>Weight increase (5%), amenorrhea (17%), nausea (11%)</td>
</tr>
<tr>
<td>Cyproterone acetate (107, 108)</td>
<td>Spotting (1%), breakthrough bleeding (7%), swelling (52%), weight increase (19%)</td>
</tr>
<tr>
<td>Desogestrel (107)</td>
<td>Spotting (1%), injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Ethinyl (92, 92A–111)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Norethindrone acetate</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Levonorgestrel-releasing intrauterine system (112–114)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Combined hormonal contraceptives</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Vaginal ring and transdermal patch (103, 121)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>GnRH agonists (122–132)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Aromatase inhibitors (133)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
<tr>
<td>Danazol (134)</td>
<td>Injection site reactions (1%), breast tenderness (2%)</td>
</tr>
</tbody>
</table>

Ferrero et al, Fertil Steril 2015

Medical Management: Bladder

<table>
<thead>
<tr>
<th>Medical treatment</th>
<th>First-line therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined hormonal contraceptives and progestogens</td>
<td>Contraceptive for women desiring to conceive</td>
</tr>
<tr>
<td>GnRH-a</td>
<td>Generally effective in improving symptoms, available in different formulations (oral, cutaneous, intrauterine device, implants), well tolerated</td>
</tr>
<tr>
<td>Aromatase inhibitors</td>
<td>Generally effective in improving symptoms in combination with hormonal contraceptives, progestogens</td>
</tr>
</tbody>
</table>

Maggiore et al, Eur Urol 2017
Surgical Management

• Bladder
 • Options
 • Bladder shaving for partial thickness lesion
 • Transurethral resection (rarely used)
 • Partial cystectomy +/- TUR
 • Principles
 • Excision of entire lesion with bladder preservation
 • Prolonged drainage (10 days) +/- cystogram
 • Ureteric stent if lesion within 2cm of ureteric orifice

• Ureter
 • Options
 • Ureterolysis
 • Ureteroureterostomy
 • Ureteroneocystostomy
 • Nephrectomy
 • Principles
 • Ureteral preservation where possible
 • Prolonged ureteric stenting

Surgical Management: Bladder

<table>
<thead>
<tr>
<th>Surgical treatment</th>
<th>TUR</th>
<th>Partial cystectomy</th>
<th>Combined TUR and partial cystectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimally invasive, fast recovery (day surgery)</td>
<td>Incomplete lesion removal, persistence of symptoms, risk of bladder perforation</td>
<td>Complete lesion removal, concomitant treatment of other endometriotic lesions, very low risk of disease and symptoms recurrence</td>
<td>Complete lesion removal, concomitant treatment of other endometriotic lesions, very low risk of disease and symptoms recurrence</td>
</tr>
<tr>
<td>Scanty evidence supports this technique that should be used just in combination with partial cystectomy</td>
<td>Risk of inadvertent removal of healthy bladder muscle</td>
<td>Simple and safe technique with excellent long-term efficacy</td>
<td>Scanty literature based on only case reports</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combines the advantages of both techniques</td>
</tr>
</tbody>
</table>

Maggiore et al, Eur Urol 2017
Surgical Management: Bladder

• 25 patients
• Laparoscopic partial cystectomy
 • Cystoscopic assist
 • Use of transvaginal manipulation
• Mean size of lesion 2.75cm
• Mean OR time 138 minutes
• Mean hospital stay 1 night
• No recurrence (32 months follow up)

Rafael Manoel Vinícius Stopiglia 1, Ubirajara Ferreira 4, Daniel Gustavo Faundes 5, Carlos Alberto Petta 3

1 Grupo de Urologia Oncológica, Universidade de Campinas, UNICAMP, SP, Brasil; 2 Centro de Reprodução Humana Campinas, SP, Brasil; 3 Departamento de Ginecologia, Universidade de Campinas, UNICAMP, SP, Brasil
Surgical Management: Bladder

Group A studies involving varied laparoscopic surgical techniques (87% required only ureterolysis)

Group B studies including only ureteroneocystostomy

Stopiglia et al, Int Braz J Urol 2017

Surgical Management: Ureter

Group A

Major complications
- Ureteral fistula/stenosis
- Hemorrhage
- Bowel anastomotic leak
- Bowel perforation
- Bladder atony
- Vesicovaginal fistula

Surgical Management: Recent Studies

Surgical Outcomes of Urinary Tract Deep Infiltrating Endometriosis
Basma Darwish, MD, Emanuela Stochino-Lei, MD, Geoffrey Pasquier, MD, Fabrice Dagardes, MD, Guillaume Defortescu, MD, Carole Abo, MD, and Horace Roman, MD, PhD

- 81 patients: 39 bladder, 31 ureter, 11 both
- Treatment
 - Bladder: 70% partial cystectomy, 30% bladder shaving
 - Ureter: 78% ureterolysis, 22% primary resection,
 - no nephrectomies
- Complications (≥ Clavien-Dindo Gr III):
 - Bladder 8%
 - Ureter 16%
 - No recurrences

Darwish et al, J Minim Invasive Gynecol 2017

Surgical Management: Recent Studies

Management of ureteral endometriosis with hydronephrosis: Experience from a tertiary medical center
Jing-Zhi Huang, Hong-Ling Guo, Jin-Bo Li and Shu-Qin Chen
Department of Gynecology and Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China

- 46 patients with hydronephrosis
- Intrinsic ureteral endometriosis
 - 73% if severe hydro
 - 17% if mild hydro
- Treatment
 - Ureterolysis 24%
 - Ureteroureterostomy 9%
 - Ureteroneocystostomy 61%
 - Nephrectomy 6%
- Complications in 20%
- Resolution of hydro at 6 months in 85%

Huang et al, J Obstet Gynaecol Res 2017
Surgical Management: Recent Studies

Laparoscopic Management of Ureteral Endometriosis and Hydronephrosis Associated With Endometriosis

João Alves, MD*, Marco Puga, MD, Rodrigo Fernandes, MD, Anne Pinton, MD, Ignacio Miranda, PhD, Elias Kervoel, MD, and Arnaud Wautier, PhD

*From the Department of Obstetrics and Gynecology, University of São Paulo, São Paulo, Brazil.

• 198 patients (28 with hydronephrosis)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients with hydronephrosis</th>
<th>Patients without hydronephrosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ureterolysis</td>
<td>15/28 (54%)</td>
<td>162/170 (95%)</td>
</tr>
<tr>
<td>Ureteroureterostomy</td>
<td>12/28 (43%)</td>
<td>8/170 (5%)</td>
</tr>
<tr>
<td>Ureteroneocystostomy</td>
<td>1/28 (3%)</td>
<td>0</td>
</tr>
</tbody>
</table>

• Complications in 10%
 • No difference between ureterolysis and ureteroureterostomy
 • Recurrence in 19%

Conclusions

• Urinary tract endometriosis is more common than originally thought, particularly in patients with deep infiltrating endometriosis
• Patients with urinary tract endometriosis often present without lower urinary tract symptoms
• Ultrasound is the preferred initial imaging modality over MRI for urinary tract endometriosis
• Medical management, with progestogens (Dienogest) or combined hormonal contraceptives, are the first line treatment options
• Surgical management with laparoscopy provides excellent outcomes for patients who fail or have contraindications to medical therapy
Acknowledgements

Dr. Paul Yong
Dr. Alex Kavanagh
Dr. Neeraj Mehra
Dr. Ryan Paterson

Case 1

- 36 year old G0
- Focal nodular hyperplasia vs. Hepatic adenoma
- Cyclical pelvic pain and hematuria
- Previous cystoscopic biopsy of bladder mass
- Exam: Rectal nodule (14mm)
- Ultrasound: Bladder nodule (35mm)
Case 1

• OR
 • MIS excision of rectal nodule
 • Cystoscopy: posterior wall extravesical mass
 • Bilateral stents
 • Pfannenstiel, partial cystectomy, Boari flap

• Pathology: endometriosis
Case 1

Case 1
Case 1

- 1 week post-op: infected hematoma (primarily subcutaneous)
- 5 months post-op: Pain free on dienogest (progestin); Liver lesions stable; Discharged
Case 2

- 33 year old G1P1, healthy
- Dysmenorrhea, deep dyspareunia, dyschezia
- New right flank pain
- Exam: vaginal nodule (35mm)
- Ultrasound: left endometrioma on ovary; moderate right hydronephrosis
- Cystoscopy: extrinsic compression of bladder
- Labs: Creatinine 115

Case 2

- OR
 - MIS left ovarian cystectomy
 - Cystoscopy: mass effect
 - Bilateral stents
 - MIS right ureterolysis (released ureter from vaginal nodule) and omental wrap
 - Residual disease

- Pathology: endometriosis
Case 2

- 12 months post-op: pain with breakthrough bleeding on OCP, mild right hydronephrosis, renal scan showed moderate decreased functioning parenchyma right kidney but no obstruction, Creatinine 109

→ patient completed childbearing, requesting hysterectomy

Case 2

- OR:
 - Total laparoscopic hysterectomy, R. oophorectomy, complete excision of endometriosis
 - Ureteroscopy: slight narrowing distal right ureter but adequate calibre
 - Bilateral stents
 - MIS right ureterolysis
Case 2
Case 2

Clip:
https://drive.google.com/file/d/0B540d0Luv1tBUmxNU3ZCMU0zNH/view

Case 2
Case 2

• 3 months post-op: No pain (no hormones), small granulation tissue at vaginal vault, right hydronephrosis “largely resolved”, renal scan unchanged, Creatinine 128

→ Chronic renal insufficiency, follow renal function, refer to nephrology if decreasing GFR

Endometriosis specialists

• Centre for Pelvic Pain and Endometriosis (BCWH/VGH/UBC)
 • Allaire
 • Williams
 • Bedaiwy
 • Yong

• VGH/UBC:
 • Mehra

Womenspelvicpainendo.com