Complications of Female Anti-incontinence Surgery

Daniel Rapoport
October 10, 2007

SUI Epidemiology

• Estim. prevalence of female incontinence
 – 20-30% of young adults
 – 30-40% of middle aged
 – Up to 50% of elderly

• Type of incontinence
 – SUI 50%
 – Mixed 30%
 – UUI 20%
SUI Pathophysiology

- Intact neural and anatomic mechanisms
- Continence requirements
 - Bladder
 - Compliant
 - Absence of instability
 - Normal sensation
 - Outlet
 - Closed at rest
 - Remains closed during rises in intra-abdominal pressure

SUI Pathophysiology

- Bladder
 - Compliant
 - Absence of instability
 - Normal sensation

- Outlet
 - Closed at rest
 - Closed during rises in IAP

- Bladder
 - Hypocompliance
 - DO
 - Sensory UI

- Outlet
 - ISD
 - Hypermobility
Female Sphincter Mechanism

• Urethral Support
 – Muscle (levators)
 – Fascia (endopelvic, pubocervical, ATFP)
 – Ligaments (pubourethral, urethropelvic)

Pelvic Floor Musculature
Fascial Supports

• **SANDWICH**
 – Levators covered by fascia on both sides
 • Superior (internal) side: endopelvic
 • Inferior (external) side: periurethral/perivesical

 – Condense laterally to form “ligaments”
 attached to arcus or bony pelvis
 • Classified by organ they support

Urethral ligaments

• **Pubourethral Ligaments**
 – Anchors mid-urethra to symphisy

• **Urethropelvic Ligaments**
 – Endopelvic fascia + periurethral fascia
 – Attach to arcus laterally
 – Supports proximal urethra and bladder neck
 to lateral pelvic sidewall
Hypermobility vs ISD

Definition
- Coexist in most incontinent women
- All patients with sphincteric incontinence have some degree of ISD

Clinical Parameter
- Subjective physical finding
 - Q tip test
- Anatomic support defects
- Retropubic suspension

Pathophysiology
- Objective
 - ALPP < 60
 - Neurologic, injury
 - Sling/tape, bulking

Repair

Hypermobility vs ISD

- Definitions controversial
- Use in guiding therapy controversial
SUI Risk Factors

• Age
• Menopause
• Parity
• Obesity
• Smoking/COPD
• Surgery

SUI Evaluation

• Basic Evaluation
 – Focused History
 • Questionnaires
 • Voiding diary
 – Physical Examination
 • Demonstrate incontinence
 – Urinalysis
 – PVR
SUI Evaluation

• Goals of basic evaluation
 – Confirm presence of incontinence
 – Identify reversible factors
 – Treat uncomplicated cases
 – Identify those that require further evaluation

Indications for Further Evaluation

• Diagnosis unclear
• Failure of initial treatment
• Plan for surgery
• Previous failed surgery
• Comorbid conditions
 – Neurogenic bladder
 – Suspected obstruction
 – Recurrent UTIs
 – Prolapse
Further Evaluation

- Urodynamics
 - Uroflow
 - CMG
 - LPPs
 - PFS
- Pad testing
- Radiology
 - Pelvic US
 - Pelvic MRI
 - VCUG
- Cystoscopy

SUI Conservative Management

- Behavior modification
 - Dietary changes
 - Timed voiding
 - Smoking cessation
 - Weight loss
 - Pelvic floor muscle training
 - Kegels, biofeedback, E-stim
- Pharmacologic
 - A-agonists, Imipramine, Duloxetine
 - Estrogen not helpful
SUI Conservative Management

“proper to counsel women who might appropriately choose surgery that, although surgery is the single most effective treatment for SUI there is a 40% to 50% chance that they can avoid an operation and be satisfied with the outcome by going through PFMT.”

CWU 9, p2142

Patients Who Benefit From Prompt Surgical Management

- Associated significant prolapse
- Severe SUI
- Already have good pelvic floor muscle tone and function
- Motivated to be completely dry
Indications for SUI Surgery

- Diagnosis confirmed
- Failure of conservative management
- Bothersome symptoms

Selection of Surgical Procedure

- Choices
 - Retropubic suspension
 - Pubovaginal sling
 - Trans-vaginal needle suspension
 - Trans-vaginal tape
 - Urethral injection
CUA Guidelines 2005

- Retropubic suspensions and PV slings are gold standard
- PV slings best for significant ISD or failed retropubic repair
- Tapes show good intermediate-term results
- Vaginal needle suspensions and colporrhaphy are less effective
- Urethral bulking is a good first option

SOGC Guidelines 2005

- Retropubic suspension has best durable cure (I-A)
- Tapes effective but long-term data lacking (I-A)
- Anterior repair or needle suspensions are inferior for isolated SUI (I-A)
- Urethral bulking associated with high failure rates (III-C)
What is Long-Term?
What is Success?

• 5 yrs or more
 – Late failures
 – Delayed complications
• No standard definition
 – Subjective cure, QoL
 – Objective cure
• Difficult to compare studies…

Reporting of Complications

• Lack of standardized definitions
• Differences in reporting
• Difficult to compare and summarize studies…
• Knowledge of potential complications important for INFORMED CONSENT
Retropubic Suspensions

• Indications
 – Surgeon preference
 – Significant hypermobility
 – Limited transvaginal access
 – Undergoing laparotomy for something else
 • Abdominal colposacropexy
Retropubic Suspension

• Contraindications
 – Lack of hypermobility, ie. Pure ISD
 – Inadequate vaginal length or mobility
 – Significant prolapse (need to address prolapse as well)

Abdominal Sacrocolpopexy with Burch Colposuspension to Reduce Urinary Stress Incontinence

• 322 women with no SUI and apical prolapse
• Grade 2-4 apical prolapse
• Randomized to Burch or no Burch
3 month follow-up

- 25% subjective SUI if no Burch
- 6% subjective SUI with Burch
 - Maintained effect when pre-op SUI excluded
- Also a significant reduction in urge/UI
- No difference in adverse events
Procedures

• Open
 – MMK
 • Paraurethral tissue anchored to pubic periosteum
 – Burch
 • Anchored to Cooper’s ligament
 – Paravaginal repairs
 • Anchored to ATFP

• Laparoscopic
Complications

• Early
 – Bleeding (<5% transfusion)
 – Organ injury (<2%)
 – Wound complications
 – Osteitis Pubis - MMK (1-3%)
• Late
 – OAB
 – Voiding dysfunction/Retention
 – Prolapse

Leach 1997

OAB

• Urgency or DO present in up to 30% pre-op
• Most resolve after repair
• 36% persistent urgency
• 11% de novo urgency
• May be associated with obstruction
Voiding Dysfunction

• Retention lasting > 4 wks (5%)
• Permanent retention (<5%)
• Require CIC or revision

• Risk factors:
 – pre-operative voiding dysfunction/retention
 – re-do surgeries

Prolapse

• Lateral vaginal wall tension may aggravate posterior weakness → enterocele
• 10-38% incidence
• most are asymptomatic
• < 5% require surgery
Pubovaginal Sling

• Indications
 – Loss of proximal urethral closure (ISD)
 • Neurogenic
 • Iatrogenic
 – Surgery
 – Radiation
 • Trauma
 – Proximal urethral defects/loss requiring surgery
 • Fistula
 • Diverticulum
 • Chronic catheterization

• Contraindications
 – Hypocompliant detrusor
Sling Materials

- Autologous fascia (Rectus/Fascia lata)
- Allografts (cadaveric)
- Xenografts
- Synthetics

Pros
- Erosion rare
- Strong
- Avoid harvest
- Abundant

Cons
- Harvest morbidity
- Processing weakens
- Infection
- Erosions

Specific Complications

- Retention relatively common
- Harvest site pain
- Erosion very rare (autologous sling)
- Sling failure
Retention

- Reported incidence varies widely
 - Groen & Bosch, 2004:
 - 42% require CIC at 3 months
 - 18% at 6 months
 - Leach et al. 2007:
 - 8% beyond 4 wks

- Predictors of??

ORIGINAl Article

Burch Colposuspension versus Fascial Sling to Reduce Urinary Stress Incontinence

Sling too tight...

- **Presentation variable (Webster, 2003)**
 - Obstructive LUTS, CIC dependence
 - Urge, urge incontinence (most common)
 - Recurrent UTIs

- **Evaluation**
 - Hx, Px, Voiding diary, cysto, VUDS
 - Only 33% had urodynamic evidence of obstruction
 - Thus, clinical diagnosis in most

Table 2. Adverse Events.

<table>
<thead>
<tr>
<th>Event</th>
<th>Burch Procedure (N=329)</th>
<th>Sling Procedure (N=326)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious adverse events;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients with event</td>
<td>32 (10)</td>
<td>42 (13)</td>
<td>0.20</td>
</tr>
<tr>
<td>Total events</td>
<td>39</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Genitourinary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urinary injury</td>
<td>2</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>Ureterovaginal fistula</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Incidental vaginotomy</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Incidental cystotomy</td>
<td>10</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Erosion of suture into bladder</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Recurrent cystitis, leading to diagnostic cystoscopy</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pyelonephritis</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Catheter complication</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Voiding dysfunction leading to surgical revision</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Pelvic pain</td>
<td>0</td>
<td>2</td>
<td>0.25</td>
</tr>
<tr>
<td>Bleeding</td>
<td>3</td>
<td>1</td>
<td>0.62</td>
</tr>
<tr>
<td>Wound complication requiring surgical intervention</td>
<td>13</td>
<td>11</td>
<td>0.83</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>1</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>Respiratory distress requiring intubation</td>
<td>0</td>
<td>1</td>
<td>0.50</td>
</tr>
<tr>
<td>Laryngospasm requiring reintubation</td>
<td>0</td>
<td>1</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Sling too tight…

• Most recommend urethrolysis if urethra appears hypersuspended

• Most recommend intervening if retention lasts > 5-6 wks

CWU 9, p 2245

Method of Urethrolysis

• Webster 2003
 – Anterior vaginal wall approach
 – Localize sling and incise in midline
 – Dissect sling laterally into retropubic space as needed

 – Fill bladder and perform Crede manœuvre
 – Endpoint is good urinary stream
Urethrolysis Results

 - 93% re-established efficient voiding
 - 67% improved urge
 - 10% recurrent SUI

Persistent Incontinence

FIGURE 3. Diagnostic algorithm for persistent or recurrent incontinence after PVS. UDS = urodynamie studies; VUS = voiding leak point pressure; DO = detrusor overactivity; PFS = pressure-flow study; VCUG = voiding cystourethrogram (lateral views).

Poon & Zimmern, 2004
Tension-Free Tapes
Rise of the Tape

- TVT first introduced in 1996 (Ulmsten)
- Despite lack of long-term data, tapes have gained popularity
 - “minimally invasive”
 - Day surgery
 - Excellent short-term results
- Over 1,000,000 tape procedures worldwide (Raz, 2007)

Rise of the Tape

- In Europe (de Tayrac, 2005)
 - 84% of all incontinence procedures
 - 2/3 TVT, 1/3 TOT
- In North America, Canada, B.C.?
Trans-Vaginal Tape Procedures

• Principles
 – Mid-urethra placement
 – Monofilament polypropylene mesh
 – Tension-free
 – General or Spinal anesthetic
 – Day surgery

Approaches

• Retropubic
 – Ascending (TVT)
 – Descending (SPARC)
• Trans-obturator (TOT)
 – In-out
 – Out-in
Large TVT Series

<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>N</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilsson (2004)</td>
<td>90</td>
<td>7yr</td>
</tr>
<tr>
<td>Kuuva (2002)</td>
<td>1455</td>
<td>-</td>
</tr>
<tr>
<td>Ward (2002)</td>
<td>344</td>
<td>2 yr</td>
</tr>
<tr>
<td>Aboussaly</td>
<td>241</td>
<td>-</td>
</tr>
<tr>
<td>Tamussino (2001)</td>
<td>2795</td>
<td>-</td>
</tr>
<tr>
<td>Schrafford (2005)</td>
<td>809</td>
<td>2 yr</td>
</tr>
</tbody>
</table>

Complication Frequency

<table>
<thead>
<tr>
<th>Complication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peri-operative</td>
<td></td>
</tr>
<tr>
<td>Hemorrhage</td>
<td>0.6-2.5%</td>
</tr>
<tr>
<td>Bladder injury</td>
<td>2.7-13.8%</td>
</tr>
<tr>
<td>Urethral injury</td>
<td>0-0.1%</td>
</tr>
<tr>
<td>Vascular injury (Iliac)</td>
<td>0.1-0.6%</td>
</tr>
<tr>
<td>Post-operative</td>
<td></td>
</tr>
<tr>
<td>Pelvic hematoma</td>
<td>0.7-3.4%</td>
</tr>
<tr>
<td>Urinary retention</td>
<td>2.3-19.7%</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>0.7-22.3%</td>
</tr>
<tr>
<td>De novo urgency</td>
<td>0.2-15%</td>
</tr>
<tr>
<td>Vaginal erosion</td>
<td>0.5-1.3%</td>
</tr>
<tr>
<td>Bladder/Urethral erosion</td>
<td>0.02%</td>
</tr>
</tbody>
</table>
Presentation and Management of Major Complications of Midurethral Slings: Are Complications Under-reported?

Donna Y. Deng, Matthew Rutman, Shlomo Raz, and Larissa V. Rodriguez

1Department of Urology, University of California, San Francisco School of Medicine, San Francisco, California
2Department of Urology, Columbia University School of Medicine, New York, New York
3Department of Urology, University of California, Los Angeles School of Medicine, Los Angeles, California

Under-Reporting?

- Literature review:
 - 14 studies met criteria (TVT, SPARC, TVTO, TOT)
 - 11,806 patients
 - 86 major complications (0.7%)
- FDA MAUDE database (voluntary reporting of device complications)
 - 161 major complications, 10 deaths
 - No denominator (ie. No national registry)
Bleeding (0.6-2.5%)

- Most define as >200-500mL blood loss
- Few require intervention
- Laceration of named arteries rare (0.1%)

- Post-op pelvic hematoma more common than intra-op hemorrhage
- Rarely requires intervention/transfusion

TABLE IV. Comparison of the Distribution of Major Complications (Major/Total Complications) of Retropubic and Transobturator Approach in Published Literature versus FDA MAUDE Database

<table>
<thead>
<tr>
<th></th>
<th>Literature</th>
<th>FDA database</th>
</tr>
</thead>
<tbody>
<tr>
<td>TVT/SPARC</td>
<td>78/1497 (5.2%)</td>
<td>154/766 (20%) → 8 deaths</td>
</tr>
<tr>
<td>TO</td>
<td>8/233 (3.4%)</td>
<td>7/162 (4%) → 2 deaths</td>
</tr>
<tr>
<td>Total</td>
<td>86/1730 (4.6%)</td>
<td>161/928 (17%)</td>
</tr>
</tbody>
</table>

FDA, food and drug administration; MAUDE, manufacturer and user facility device experience.
Bladder Perforation (2.7-13.8%)

• More common early in the learning curve
• Higher risk if previous incontinence surgery
• Conflicting evidence for other risk factors:
 – Previous hysterectomy
 – Obesity
 – Prolapse
 – Type of anesthesia

Value of Cystoscopy

• Duckett, 2007:
 – 5 bladder perforations picked up in 100 consecutive patients with routine cystoscopy

• LeSala, 2006:
 – No difference in subjective cure rates in patients with bladder perforation recognized at surgery
Voiding Dysfunction (2.3-19.7%)

- Most define as prolonged need for catheterization
- May also present with
 - Urgency
 - Recurrent UTIs
- Risk factors not well delineated
- Optimal evaluation and management not defined

Post-TVT Voiding Patterns

- Cohort studies have shown urodynamic changes consistent with obstruction
 - Gateau et al. 2003.
 - 112 patients. 86% cured. 99% improved.
 - Compared pre and post-TVT UDS
 - Decreased Qmax
 - Increased PdetQmax
 - PVR > 100 cc in 10%
Post-TVT Voiding Patterns

- **Gateau et al. cont’d**
- Of interest:
 - 12% de novo urgency
 - No de novo detrusor overactivity
 - 24% had urodynamic obstruction pre-op

Urethrolysis

- Several studies showing effectiveness in restoring efficient voiding
 - Klutke, 2001: 17/600 patients in retention
 - All 17 urethrolysis at mean 64 days post-op
 - All had obstruction relieved, only 1 recurrent SUI
- No established predictors of who will benefit
- No optimal timing established
Vaginal Erosion (0.5-1.3%)

- Most present b/w 3wk and 3mo
 - Vaginal discharge
 - Dysparunea
 - Palpable mesh
 - LUTS
- Optimal management controversial
 - Conservative (Kobashi and Govier, 2003)
 - Vaginal flap reapproximation
 - Tape excision

Vaginal Erosion

- 10 erosions identified.
- 3 managed conservatively.
- 6 re-operated.
- All resolved and continence maintained.
Vaginal Erosion

• Conservative management plausible in asymptomatic small erosions
• Good results with reapproximation of vaginal mucosa for small erosions
• Tape excision reserved for severe symptoms or failure of above
• Continence usually maintained after tape excision

Urethral Erosion

• Rare
• Conservative therapy not an option
• Typically require tape excision and urethral reconstruction
• Martius flap may be used to bolster repair
• Autologous fascial sling placement has been described
Other

- Chronic Pelvic Pain
- Dysparunea
- Leg Pain
- Obturator hematoma
- Obturator abcess

Conclusion

- Each procedure has a unique side effect profile
- Important in gaining informed consent
- Minimally invasive procedures not to be taken lightly
- Complication reporting is not standardized