Review of UPJ Obstruction

November 7, 2007

Chris Hoag, PGY5 UBC Urology

References

- CWU9 – Ch115
- AUAUS 2007 – Lessons 5 & 6
- Literature review
- The Centre of the Universe
 - (video from Toronto Sick Kids Hospital)
UPJO Facts

- 1/1500 live births
- Clustering of presentation time:
 - Neonatal/antenatal (now the majority)
 - Adolescence/adulthood (symptoms)
- #1 cause of antenatal hydro (48%)
- Boys > girls (>2:1)
- L > R (2:1)
- Bilateral in 10-40%
- Runs in families
Etiology

- Primary
 - Intrinsic
 - Extrinsic
- Secondary

Primary UPJO

- Intrinsic
 - Adynamic segment/intrinsic narrowing
 - Delayed/failed recanalization after period of obstruction
 - Neuronal depletion in proximal ureter
 - Incomplete development of circular sm. m.
 - Alteration of collagen fiber composition b/w sm. m. cells
 - Valvular (Ostling’s) mucosal folds
 - Persistent fetal convolutions
 - Ureteral polyps
Primary UPJO

- Extrinsic
 - Crossing vessel (anterior)
 - Renal malrotation (over/under)

Pathophysiology of Extrinsic UPJO

- Crossing vessel → two point of kinking
 - Where ureter drapes over
 - Angulated at UPJ
- Ensuing pelvic distension & inflammation
- Further adhesion kinking & 2-point obstruction
- Ischemia, fibrosis, stenosis
Secondary UPJO

- Severe VUR (Grade IV/V) (10%)
 - Kinking of tortuous system at relatively fixed UPJ
 - Lower pole moiety of incomplete duplication

Secondary UPJO

- Severe VUR (Grade IV/V) (10%)
 - Kinking of tortuous system at relatively fixed UPJ
 - Lower pole moiety of incomplete duplication
 - Stone-related scar
 - Iatrogenic (instrumentation)
Associated Congenital Anomalies

- GU Anomalies:
 - Contralateral UPJO = #1 (10-40%)
 - VUR (up to 40%) – usually low grade
 - Renal dysplasia
 - MCDK
 - Renal agenesis (5%)
 - Duplicated system (usually lower moiety UPJO)
 - Horseshoe kidney
 - Ectopic kidney
- Non-GU Anomalies: VATERR (10-20%)
Diagnosis

Presenting S&Sx

- Infants
 - Hydronephrosis on antenatal U/S = majority
 - Palpable abdominal mass
 - FTT
 - Feeding problems
 - Sepsis (UTI) = presenting Sx 30% beyond neonatal period
 - Pain/hematuria (stones)
Presenting S&Sx

- Children
 - Episodic flank/abdominal pain +/- N/V
 - Episodic vomiting alone
 - Hematuria after apparently minor trauma (25%)
- Adults
 - Episodic flank/abdominal pain (esp. with diuresis)
 - HTN

Diagnostic Dilemmas
Diagnostic Dilemmas

- Antenatal hydro doesn’t necessarily = obstruction
 - Hydro from active diuresis (e.g. late gestation fetal kidney \Rightarrow high output, high compliance)
 - Temporary fetal kidney obstruction with spontaneous resolution (mucosal folds/convolutions)
- Minimal hydro doesn’t necessarily = no risk
 - Intrarenal vs. extrarenal pelvis with UPJO
Pediatric UPJO W/U

Post-natal w/u of Antenatal Hydro

- Ultrasound – renal & bladder
Ultrasound

- Delay post-natal U/S at least 48 hours (? 2 weeks) d/t relative oliguria in early postnatal period
 - Neonate GFR doubles in first week
 - Risk of underestimating degree of hydro

Key factors to note:
- Degree of hydrenephrosis
- Thickness of parenchyma
- Echotexture of parenchyma
- Contralateral hypertrophy

Day 1 2 Weeks
SFU Grading System

- Grade 1 = renal pelvis splitting only
- Grade 2 = pelvicalyceal dilation (some calyces only)
- Grade 3 = significant pelvicalyceal dilation (all calyces)
- Grade 4 = Grade 3 + parenchymal thinning
13 infants <1yo (71% male) with hydronephrosis or hydroureteronephrosis

61 of 97 hydronephrotic kidneys = obstructed (lasix renogram)

Using cutoff of Grade 3 or higher for obstruction → 88% sensitive, 95% specific

Conclusion: “the radiological diagnosis of obstruction is linked with the grade of hydronephrosis”

Randomly selected ultrasounds shown to group of trainees & staff pediatric urologists twice (7-14 days apart) & SFU grading judged

Intra-rater agreement “good”
- Staff: 69-94%
- Trainees: 63-90%

Inter-rater agreement “modest”
- SFU0 = high
- SFU1,2,4 = fair
- SFU3 = poor
Ultrasound – ?Other Markers of Obstruction

- Pelvicaliceal diameter > 2.0cm = high risk of requiring surgery
- Renal parenchymal : pelvicaliceal area
 - < 1.6 = correlates with obstructive pattern on diuretic renography & need for pyeloplasty
 - > 1.6 = can be safely observed
- Serial ultrasounds
 - Worsening hydronephrosis = likely obstruction
 - Compensatory contralateral growth
- Doppler U/S
 - $RI > 0.75$ = more likely obstructed
 - RI findings further provoked with lasix dose
 - Only useful in acute obstruction, not chronic (AUAUS '07-4.5)

Post-natal w/u of Antenatal Hydro

- Ultrasound – renal & bladder
- Rule out VUR
 - VCUG
 - Nuclear VCUG
- Low grade VUR common
- High grade VUR may cause secondary UPJO
 - If equivocal obstruction \Rightarrow fix VUR & monitor UPJO
Post-natal w/u of Antenatal Hydro

- Ultrasound – renal & bladder
- VCUG
- Nuclear Renography

Nuclear Renography

- Has supplanted IVP as primary functional diagnostic test
- Considerable controversy in protocols for performing and interpretation b/w centres
- “Well-tempered renogram” (SFU-PNMC)
 - Prehydration with 10-15 cc/kg NS
 - Foley catheter
 - DTPA or MAG3 (usually the latter now)
 - Diuresis (lasix) - ??time (F-15, F0, F+20)
Nuclear Renography

- Nuclear Renography Interpretation
 - Obstruction:
 - Static measures (single test):
 - Rising drainage curve
 - $T_{1/2} > 20\text{min}$
 - Differential $\Gamma_n < 40\%$
 - Dynamic measures (serial tests):
 - Declining differential renal Γ_n over time
 - Increasing hydro over time
 - No Obstruction
 - Normal drainage curves
 - $T_{1/2} < 10\text{min}$

- Causes of false positive ($T_{1/2} > 20\text{min}$):
 - Dehydration
 - Suboptimal dose/timing of diuretic
 - Poor renal function/immature kidneys
 - Full bladder (no catheter)
 - ROI poorly drawn

Table 46.11. FACTORS AFFECTING DIURETIC RENOGRAPHY IN THE NEONATE

<table>
<thead>
<tr>
<th>Renal maturity</th>
<th>Volume of urine in bladder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal function</td>
<td>Outlined regions of interest</td>
</tr>
<tr>
<td>Hydration status</td>
<td>Patient position</td>
</tr>
<tr>
<td>Type and dose of radiopharmaceutical</td>
<td>Capacity of upper tract</td>
</tr>
<tr>
<td>Dose of diuretic</td>
<td>Severity of obstruction</td>
</tr>
<tr>
<td>Timing of diuretic administration</td>
<td>Site of obstruction</td>
</tr>
<tr>
<td>Vescicourethal reflux</td>
<td>Method of data interpretation</td>
</tr>
</tbody>
</table>
Post-natal w/u of Antenatal Hydro

- Ultrasound - renal & bladder
- VCUG
- Nuclear Renography
- MRI

MRI

- Not widely used thusfar
- Gadolinium-DTPA enhanced
- Provide anatomical & functional information
- Differential renal f’n
 - Volume of enhancing renal parenchyma
- Renal transit time (akin to T½ of nuclear renogram)
 - Time from first cortical enhancement to contrast in ureter at or below lower pole of kidney after lasix dose (>490sec = obstr.)
Post-natal w/u of Antenatal Hydro

- Ultrasound – renal & bladder
- VCUG
- Nuclear Renography
- MRI
- Whitaker Test

Whitaker Test

- NT & Foley catheter
- Pressure readings from renal pelvis & bladder
- Flow rate @ 5-10cc/sec
- Obstruction = ΔP > 20cmH₂O
- Unobstructed = ΔP < 12cmH₂O

Criticisms:
- Cumbersome
- No one knows how to do it anymore
Post-natal w/u of Antenatal Hydro

- Ultrasound – renal & bladder
- VCUG
- Nuclear Renography
- MRI
- Whitaker Test
- Biomarkers

?Biomarkers

- NAG = N-Aceytl-ß-D-glucosaminidase
- TGF-ß1

- Both found at increased levels in urine of obstructed kidneys
15 children underwent UPJO repair vs. 11 controls with dilated non-obstructed kidneys

- TGF-β1 measured in renal pelvis, bladder of UPJO kids preop & 3 mos postop
- Bladder TGF-β1 measured in controls

Obstruction = TGF-β1 > 29pg/mg creatinine
Pediatric W/U Summary

- Antenatal U/S followed by post-natal U/S at 2 weeks
- VCUG to r/o VUR
- Nuclear renogram to define differential function and drainage
- If acceptable differential function & drainage curves, follow with serial U/S +/- nuclear renograms (esp. if U/S changes)

Kids - Who to treat?

- Symptomatic (pain, hematuria, HTN, etc)
- Ultrasound:
 - Evolving parenchymal thinning
 - Contralateral compensatory hypertrophy
- Nuclear renogram:
 - Declining renal f’n (?<40%)
 - Worsening obstruction (?T½<20min)
Who to treat? – Special case

- B/L UPJO (10% cases) & Solitary kidney
- Nuclear renogram & U/S interpretation more difficult as no “normal” kidney for comparison
- Treatment decision making
 - Relies on clinician judgement based on:
 - Drainage curves
 - Degree of hydronephrosis

Adult UPJO W/U Summary

- Goals:
 - Confirm functionally significant obstruction
 - Assessment of differential renal function
 - Delineation of UPJ anatomy
Adult UPJO W/U Summary

- Nuclear renogram
 - Differential function
 - Drainage curves
- CT-angiogram
 - Vascular anatomy (?crossing vessel)
 - Degree of hydro
- ?Retrograde pyelogram
 - Usually at time of definitive Tx to assess stricture length

Adults – Who to Treat?

- Symptomatic
- Complications
 - Infection
 - Stones
- Renal function compromise
Management

Hot Springs, Tofino
Management Options

- Open repair
- Minimally Invasive repair
 - Endoscopic
 - Laparoscopic

Management

- Open surgical repair techniques:
 - Foley Y-V plasty
 - No pelvic reduction
 - Can’t transpose crossing vessel
Management

- Open surgical repair techniques:
 - Culp DeWeerd’s spiral flap
 - Can get significant length with large renal pelvis

- Davis intubated ureterostomy
 - Stent & NT
 - 6 weeks for ureteric wall regeneration
Management

- Open surgical repair techniques:
 - Anderson-Hynes dismembered pyeloplasty
 - Allows transposition anterior to crossing vessels
 - Excision of diseased segment
 - Reduction pyeloplasty
 - Spiral flap can be used for extra length

Management

- Open Approaches
 - Anterior subcostal muscle-splitting
 - Flank – off tip of 12 or supra-12
 - Dorsal lumbotomy
Outcomes of Open Repairs

- No review papers/meta-analysis
- My review of dozens of papers:
 - Consistently >90% (92-100%)
 - Salvage pyeloplasty = 80%+
Management

- Minimally invasive approaches
 - Endoscopic
 - Laparoscopic

Endopyelotomy

- Access:
 - Antegrade or retrograde

- Technique:
 - Balloon dilatation
 - Acucise
 - Cold-knife
 - Hot-knife
 - Laser
Endopyelotomy

- Indications
 - Mild-moderate hydro
 - Good renal function (>30%)
 - Short stenosis (<1.5cm)
 - Absence of crossing vessel
 - Previous pyeloplasty (open/lap) failure

- Predictors of poor outcome:
 - Crossing vessel
 - Severe hydronephrosis (esp. >100cc)
 - Long stricture length
 - Poor renal function (<20%)
 - Prior failed endopyelotomy

Retrograde Endopyelotomy

- Balloon dilatation
- Late 1980’s
- Concept = retrograde pyelolysis & stenting

*British Journal of Urology (1993), 71, 152-155
© 1993 British Journal of Urology*

Retrograde Balloon Dilatation for Pelviureteric Junction Obstruction

S. McCLINTON, J. H. STEYN and J. K. HUSSEY

Departments of Urology and Radiology, Royal Infirmary, Aberdeen
Retrograde Endopyelotomy

- 43 UPJ’s in 42 pts.
- 79% primary UPJ
- 30 Fr. Balloon diam.
- 10 Fr. JJ x 6wks
- “Improvement” = >5% increase split f’n OR T½<20min
- 80% improved symptoms (85% 1º; 56% 2º)
- 79% renographic improvement (82% 1º; 56% 2º)

Retrograde Endopyelotomy

- Balloon dilatation in kids
- First described in mid-1990’s

Retrograde Balloon Dilatation for Pelviureteric Junction Obstruction

S. McClinton, J. H. Steyn and J. K. Hulsey

Departments of Urology and Pathology, Royal Infirmary, Aberdeen

Retrograde Balloon Dilatation of Ureteropelvic Obstructions in Infants and Children: Early Results

Hock L. Tan, F.R.A.C.S., Julian P. Roberts, F.R.C.S. (Plast.)
And D. Grattan-Smith, F.R.A.C.R.

- Technique:
 - 10 Children with obstruction on lasix renogram (3mos – 9 yrs)
 - C&P
 - UVJ dilation to 5 Fr
 - 3.8 F, 8Atm Meditech radial balloon dilator
 - 3 minute dilation (hourglass deformity removed)
 - 4.8 F JJ stent x 6 weeks

Urology 1995 46(1): 89-91
Retrograde Endopyelotomy

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at Operation (months)</th>
<th>Side</th>
<th>Presentation</th>
<th>Preoperative Urate</th>
<th>Preoperative</th>
<th>Postoperative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>42</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>90</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>66</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>21</td>
<td>S</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>82</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>98</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>114</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>L</td>
<td>Y</td>
<td>Y</td>
<td>105</td>
<td>180°</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>58</td>
<td>ND°</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>R</td>
<td>Y</td>
<td>Y</td>
<td>34</td>
<td>11</td>
</tr>
</tbody>
</table>

Outcomes:
- Median f/u 22mos (4-25)
- Lasix renogram @ 3-6 mos postop = 70% success
 - No obstruction = 6
 - Improved drainage = 1 (T½ 90min → 28min)
 - 3 failed

Urology 1995 46(1): 89-91

Retrograde Endopyelotomy

Acucise

First publication 1994
- 2 kids
Retrograde Endopyelotomy

- Acucise

- No preoperative vascular imaging
- Posterolateral incision of UPJ & JJ stenting
- 78% success
- 4% post-operative hemorrhage (3 pts)
 - 2 required embolization

Acucise Endopyelotomy

- 52-81% radiographic success

<table>
<thead>
<tr>
<th>References</th>
<th>No. Cases</th>
<th>No. Primary UPJO</th>
<th>Follow-up (mos)</th>
<th>% Symptomatic Improvement</th>
<th>% Radiological Improvement</th>
<th>% Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preminger et al5</td>
<td>66</td>
<td>52</td>
<td>8</td>
<td>Not available</td>
<td>77</td>
<td>4.5</td>
</tr>
<tr>
<td>Biyani et al6</td>
<td>42</td>
<td>34</td>
<td>27</td>
<td>64</td>
<td>52</td>
<td>10</td>
</tr>
<tr>
<td>Lechevallier et al7</td>
<td>36</td>
<td>23</td>
<td>24</td>
<td>Not available</td>
<td>75</td>
<td>Not available</td>
</tr>
<tr>
<td>Nadler et al8</td>
<td>26</td>
<td>17</td>
<td>33</td>
<td>89</td>
<td>81</td>
<td>None</td>
</tr>
<tr>
<td>Fuechter et al9</td>
<td>32</td>
<td>27</td>
<td>14</td>
<td>Not available</td>
<td>81</td>
<td>15.6</td>
</tr>
<tr>
<td>Gelet et al10</td>
<td>44</td>
<td>21</td>
<td>12</td>
<td>78</td>
<td>Not available</td>
<td>4.6</td>
</tr>
<tr>
<td>Kim et al11</td>
<td>77</td>
<td>61</td>
<td>12</td>
<td>Not available</td>
<td>78</td>
<td>4</td>
</tr>
</tbody>
</table>
Retrograde Endopyelotomy

- Laser ureteroscopic endopyelotomy

Long-term results of endoureterotomy using a holmium laser

Hastuki Hibi,1 Tadashi Ohori,1 Tomohiro Taki,2 Yoshiki Yamada2 and Nobuaki Honda1

1Department of Urology, Kyorinu General Hospital, Nagoa and 2Department of Urology, Aichi Medical University, Aichi, Japan

- 20 ureters in 18 adult patients
- 11 stone-scar, 3 ureteroenteric (neobladders), 5 UPJO, 1 primary ureteric
- 8 Fr semirigid ureteroscope, Holmium @ 10W (1J x 10Hz), incised to fat, 12F JJ stent x6wks

F/U = nuclear renogram or U/S & IVP
- Mean stricture length = 2.25cm
- Mean f/u = 60 mos (46-74)
- 80% success – both ureteric & UPJ
- 1 UPJO failure = high insertion
Retrograde Endopyelotomy

- Laser Endopyelotomy vs. Acucise

Prospective, Randomized Comparison of Ureteroscopic Endopyelotomy Using Holmium:YAG Laser and Balloon Catheter

From the Mansoura Urology and Nephrology Center, Mansoura, Egypt

- RCT, 2001-2003
- 40 adult patients (mean age 39); 20/group
 - 14 primary UPJO; 26 secondary
- Preop w/u = IVP, CT for vasculature, lasix renogram

J Urol 2006, 175: 614-618

Retrograde Endopyelotomy

- Laser Endopyelotomy vs. Acucise
- Techniques:

<table>
<thead>
<tr>
<th>Laser Endopyelotomy</th>
<th>Acucise</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 1.2 J, 10Hz = 12 W</td>
<td>0.5 cc contrast in balloon to ensure position</td>
</tr>
<tr>
<td>- Lateral incision to fat</td>
<td>- 75-100W x 5 sec as 2cc injected in balloon</td>
</tr>
<tr>
<td>- 8 Fr. Semirigid ureteroscope</td>
<td>- re-fire x1 if still waisted</td>
</tr>
<tr>
<td>- Balloon dil’n prn for hemostasis (1 pt)</td>
<td>- Keep inflated x10min for hemostasis</td>
</tr>
</tbody>
</table>

- 14/7 endopyelotomy stent vs. 7 Fr JJ

J Urol 2006, 175: 614-618
Retrograde Endopyelotomy

- Laser Endopyelotomy vs. Acucise
- “Success” = subjective improvement in Sx with objective improvement in obstruction (T½<20min, improved/stable GFR)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Laser</th>
<th>Acucise™</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean operative time ± SD (min)</td>
<td>64.7 ± 20.4</td>
<td>54.7 ± 20.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Mean hemoglobin deficit ± SD (gm)</td>
<td>0.31 ± 0.19</td>
<td>0.49 ± 0.56</td>
<td>0.08</td>
</tr>
<tr>
<td>Mean hospital stay ± SD (days)</td>
<td>6.1 ± 2.26</td>
<td>6.6 ± 2.26</td>
<td>0.35</td>
</tr>
<tr>
<td>No. complications (%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0.20</td>
</tr>
<tr>
<td>No. objective success (%)</td>
<td>1 (0%)</td>
<td>0 (0%)</td>
<td>1.00</td>
</tr>
<tr>
<td>Primary UPILO</td>
<td>6 (12.6)</td>
<td>4 (40.7)</td>
<td>0.38</td>
</tr>
<tr>
<td>Secondary UPILO</td>
<td>10 (21.3)</td>
<td>9 (40.9)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Complications:
- Laser = 1 patient (nausea & vomiting)
- Acucise = 4 patients (20%)
 - 1 sepsis
 - 3 post-op bleeds \(\rightarrow\) 1u pRBC’s each, no embolisation

J Urol 2006, 175: 614-618
Retrograde Endopyelotomy

- Laser Endopyelotomy vs. Acucise

<table>
<thead>
<tr>
<th>Reference</th>
<th>No. Patients</th>
<th>Mean Operating Time (min)</th>
<th>% Success</th>
<th>Hospital Stay</th>
<th>% Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrograde incision:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conlin and Bigley</td>
<td>21</td>
<td>130</td>
<td>81</td>
<td>Mean less than 24 hrs</td>
<td>4.8</td>
</tr>
<tr>
<td>Tourek et al</td>
<td>22</td>
<td>96</td>
<td>87.5</td>
<td>Mean less than 24 hrs</td>
<td>3</td>
</tr>
<tr>
<td>Smyth et al</td>
<td>20</td>
<td>64</td>
<td>75</td>
<td>Mean 1.6 days</td>
<td>10</td>
</tr>
<tr>
<td>Meta et al</td>
<td>65</td>
<td>60</td>
<td>73.3</td>
<td>Mean less than 24 hrs</td>
<td>11.1</td>
</tr>
<tr>
<td>Present series</td>
<td>20</td>
<td>65</td>
<td>85</td>
<td>Mean 1.1 days</td>
<td>10</td>
</tr>
<tr>
<td>Acucise™ incision:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nadler et al</td>
<td>16</td>
<td>100</td>
<td>70</td>
<td>Mean 0.7 days</td>
<td>10</td>
</tr>
<tr>
<td>Printz et al</td>
<td>21</td>
<td>45</td>
<td>81</td>
<td>Mean 1.6 days</td>
<td>10.7</td>
</tr>
<tr>
<td>Gal et al</td>
<td>33</td>
<td>84</td>
<td>76</td>
<td>Not mentioned</td>
<td>6.4</td>
</tr>
<tr>
<td>Lebrec et al</td>
<td>36</td>
<td>80</td>
<td>75</td>
<td>Mean 6 days</td>
<td>14</td>
</tr>
<tr>
<td>Present series</td>
<td>30</td>
<td>58</td>
<td>40</td>
<td>Mean 1.6 days</td>
<td>25</td>
</tr>
</tbody>
</table>

J Urol 2006, 175: 614-618

Retrograde Endopyelotomy

- 73-85% radiographic success

<table>
<thead>
<tr>
<th>References</th>
<th>No. Cases</th>
<th>No. Primary UPJO</th>
<th>% Crossing Vessels</th>
<th>Cutting Method (No.)</th>
<th>Follow-up (mo)</th>
<th>% Symptomatic Improvement</th>
<th>% Radiological Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giddens and Grasso</td>
<td>23</td>
<td>18</td>
<td>17</td>
<td>Laser</td>
<td>19</td>
<td>Not available</td>
<td>83</td>
</tr>
<tr>
<td>Gerber and Kim</td>
<td>22</td>
<td>18</td>
<td>Not available</td>
<td>Electrocautery (16), laser (6)</td>
<td>20.5</td>
<td>91</td>
<td>82</td>
</tr>
<tr>
<td>Matar et al</td>
<td>45</td>
<td>40</td>
<td>Not available</td>
<td>Laser</td>
<td>23.2</td>
<td>65.4</td>
<td>73.1</td>
</tr>
<tr>
<td>Conlin and Bigley</td>
<td>21</td>
<td>15</td>
<td>57%</td>
<td>Electrocautery (14), laser (6), cold knife (1)</td>
<td>23</td>
<td>Not available</td>
<td>81</td>
</tr>
<tr>
<td>Rennet et al</td>
<td>24</td>
<td>27</td>
<td>Not available</td>
<td>Laser</td>
<td>18</td>
<td>Not available</td>
<td>85</td>
</tr>
</tbody>
</table>
Antegrade Endopyelotomy

- Adults & older children/adolescents
- Via nephrostomy tract (posterior middle calyx)
- Dilation, cold-knife, electrocautery, or laser
- Endopyelotomy stent x6wks

Advantages:
- Concomitant PCNL
- Anatomic factors that preclude ureteroscopy
- Direct vision

Disadvantages:
- Multiple anesthetics
- Increased morbidity
- Longer hospital stay
Antegrade Endopyelotomy

Endopyelotomy in Childhood: Our Experience with 37 Patients

BÉLA TÁLLAI, M.D., MORSHED ALI SALAH, M.D., PH.D., TIBOR FLASKÓ, M.D., CSABA TÓTH, M.D., D.SC., and ATTILA VARGA, M.D., PH.D.

- 1990-2002
- 37 children with primary UPJO
- Mean age 11.5 yrs (4.5-17)
- Preop Dx = U/S & IVP (no renograms)
- All percutaneous antegrade endopyelotomy
- F/U = IVP at 1 year postop

Technique:
- Ureteral catheter → methylene blue in pelvis
- Middle calyceal puncture
- Dilated to 26 Fr.
- Wire placed antegrade across UPJ (catheter removed)
- Cold endopyelotomy knife – dorsolateral incision to fat
- 6-12 Fr. JJ stent or “trans-renal drain” x 6 weeks
- Antegrade nephrostogram extravasation confirmed full-thickness incision
Antegrade Endopyelotomy

Outcomes:

Complications:
- 2 children required exploration d/t bleeding from crossing vessel → ligation & open pyeloplasty
- 4 children with fever → ampicillin & acetaminophen
- Hospital stay = 2-10 days (mean = 6)
- 81% “good”, 8% “satisfactory”, 11% failures

Antegrade Endopyelotomy

73-88% radiographic success

<table>
<thead>
<tr>
<th>References</th>
<th>No. Cases</th>
<th>No. Primary UPIO</th>
<th>Cutting Method (No.)</th>
<th>Follow-up (mos)</th>
<th>% Symptomatic Improvement</th>
<th>% Radiological Improvement</th>
<th>% Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Van Cauwenbergh et al(^a)</td>
<td>102</td>
<td>81</td>
<td>Cold knife</td>
<td>60</td>
<td>Not available</td>
<td>73</td>
<td>Not available</td>
</tr>
<tr>
<td>Kletscher et al(^b)</td>
<td>50</td>
<td>49</td>
<td>Cold knife</td>
<td>12</td>
<td>92</td>
<td>88</td>
<td>6</td>
</tr>
<tr>
<td>Gupta et al(^c)</td>
<td>401</td>
<td>235</td>
<td>Cold knife</td>
<td>51</td>
<td>Not available</td>
<td>85</td>
<td>Not available</td>
</tr>
<tr>
<td>Dammert et al(^d)</td>
<td>80</td>
<td>80</td>
<td>Cold knife</td>
<td>26</td>
<td>Not available</td>
<td>81</td>
<td>13</td>
</tr>
<tr>
<td>Shallav et al(^e)</td>
<td>63</td>
<td>40</td>
<td>Electrocautery</td>
<td>31</td>
<td>89</td>
<td>85</td>
<td>27</td>
</tr>
<tr>
<td>Knudsen et al(^f)</td>
<td>89</td>
<td>61</td>
<td>Electrocautery (77), laser (3)</td>
<td>55</td>
<td>Not available</td>
<td>67</td>
<td>Not available</td>
</tr>
</tbody>
</table>

TABLE 1: Worldwide data on antegrade endopyelotomy 2006
So long ago, I can’t remember…

Laparoscopic Pyeloplasty

- First described in adults in 1993 (Kavoussi)
- First described in kids in 1999 (Tan)
- First pediatric robot-assisted described in 2002 (Peters)
- Transperitoneal vs. retroperitoneal
- Probably little advantage in child < 2yrs (DL equally non-morbid)
- **Increasingly the preferred first-line approach**
Laparoscopic Pyeloplasty

Head

Feet

R side down

Laparoscopic Pyeloplasty
Laparoscopic Pyeloplasty

- Outcomes are equivalent to open (symptomatic & objective)

<table>
<thead>
<tr>
<th>References</th>
<th>No. Cases</th>
<th>Approach</th>
<th>Repair Type</th>
<th>% Crossing Vessels</th>
<th>% Open Conversion</th>
<th>Operative Time (Mins)</th>
<th>Hospital Stay (days)</th>
<th>Follow-up (mos)</th>
<th>% Symptomatic Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jarrett et al'85</td>
<td>100</td>
<td>Transperitoneal</td>
<td>Dismembered</td>
<td>57</td>
<td>0</td>
<td>252</td>
<td>3.3</td>
<td>26</td>
<td>98</td>
</tr>
<tr>
<td>Janetschek et al'9</td>
<td>67</td>
<td>Transperitoneal</td>
<td>Fangerplasty</td>
<td>79</td>
<td>1.5</td>
<td>119</td>
<td>4.1</td>
<td>25</td>
<td>98</td>
</tr>
<tr>
<td>Eden et al'77</td>
<td>50</td>
<td>Retroperitoneal</td>
<td>Dismembered</td>
<td>42</td>
<td>5.5</td>
<td>164</td>
<td>2.6</td>
<td>19</td>
<td>98</td>
</tr>
<tr>
<td>Turk et al'18</td>
<td>49</td>
<td>Transperitoneal</td>
<td>Dismembered</td>
<td>37</td>
<td>0</td>
<td>165</td>
<td>3.7</td>
<td>23</td>
<td>98</td>
</tr>
<tr>
<td>Soulie et al'95</td>
<td>55</td>
<td>Retroperitoneal</td>
<td>Dismembered (48)</td>
<td>42</td>
<td>5.4</td>
<td>185</td>
<td>4.5</td>
<td>14</td>
<td>100</td>
</tr>
<tr>
<td>Mandhani et al'99</td>
<td>92</td>
<td>Transperitoneal</td>
<td>Dismembered (59), Fangerplasty (7), Foley Y-V (20)</td>
<td>16</td>
<td>6.5</td>
<td>179</td>
<td>4</td>
<td>12</td>
<td>93</td>
</tr>
</tbody>
</table>

- Radiographic success rates: 88-100%

Laparoscopic Pyeloplasty

- Open vs. Lap Pyeloplasty Trials (Adults):
 - Success = radiographic (renogram)

<table>
<thead>
<tr>
<th>Study</th>
<th>F/U</th>
<th>Lap Success</th>
<th>Open Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bauer, 1999</td>
<td>12+ mos</td>
<td>98%</td>
<td>94%</td>
</tr>
<tr>
<td>Klingler, 2003</td>
<td>23 mos</td>
<td>96%</td>
<td>93%</td>
</tr>
<tr>
<td>Baldwin, 2003</td>
<td>5-11 mos</td>
<td>94%</td>
<td>86%</td>
</tr>
</tbody>
</table>

- “Currently, the role of open surgery in the surgical algorithm of UPJO is reserved for patients who require pyeloplasty when laparoscopic surgery is unavailable or technically prohibitive”

 AUAUS 2006
Laparoscopic Pyeloplasty

- Expanding indications:
 - Secondary UPJO
 - Renal calculi (concomitant pyelolithotomy)
 - Solitary kidneys
 - Anatomically anomalous kidneys

Laparoscopic Pyeloplasty

Robotic vs standard retroperitoneoscopic pyeloplasty in children

L.H. Olsen and T.M. Jørgensen
Urology, Section of Paediatric Urology, Sæby Region, Aarhus University Hospital, Aarhus, Denmark

- 15 pure retroperitoneoscopic pyeloplasties vs. first 8 DaVinci-assisted pyeloplasties
- Robot used for anastamosis only
Laparoscopic Pyeloplasty

Robotic vs standard retroperitoneoscopic pyeloplasty in children
L.H. Olsen and T.M. Jørgensen
Urology, Section of Paediatric Urology, Skejby-Sygehus, Aarhus University Hospital, Aarhus, Denmark

- Operative (skin-skin) time significantly shorter for robot (172 vs. 210 min)
- Setup time for robot = 40 min
- Conclusion: for first 8 cases, robot was time neutral, complication neutral, hospital-stay neutral

Laparoscopic Pyeloplasty

- Robotic-assisted Success Rates: 94-100%

<table>
<thead>
<tr>
<th>References</th>
<th>No. Case</th>
<th>Approach</th>
<th>Repair Type (No.)</th>
<th>% Crossing Vessels</th>
<th>Operative Time (min)</th>
<th>Hospital Stay (days)</th>
<th>Follow-up (weeks)</th>
<th>% Symptomatic Success</th>
<th>% Radiological Success</th>
<th>% Complications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noble et al.</td>
<td>50</td>
<td>Transperitoneal</td>
<td>Dismembered</td>
<td>30</td>
<td>122</td>
<td>1.1</td>
<td>10.5</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Rubino et al.</td>
<td>35</td>
<td>Transperitoneal</td>
<td>Dismembered</td>
<td>29</td>
<td>216</td>
<td>2.4</td>
<td>7.9</td>
<td>94</td>
<td>94</td>
<td>11</td>
</tr>
<tr>
<td>Taliq et al.</td>
<td>26</td>
<td>Transperitoneal</td>
<td>Dismembered (23), Poly V (3)</td>
<td>42</td>
<td>243</td>
<td>2</td>
<td>6</td>
<td>95</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td>Mundy-Temraz et al.</td>
<td>32</td>
<td>Transperitoneal</td>
<td>Dismembered (31), Dropal (1)</td>
<td>44</td>
<td>300</td>
<td>1.1</td>
<td>10.5</td>
<td>94</td>
<td>94</td>
<td>3</td>
</tr>
<tr>
<td>Serrato et al.</td>
<td>11</td>
<td>Transperitoneal</td>
<td>Dismembered</td>
<td>36</td>
<td>197</td>
<td>5.5</td>
<td>21</td>
<td>100</td>
<td>100</td>
<td>9</td>
</tr>
<tr>
<td>Snook et al.</td>
<td>10</td>
<td>Retropereitoneal</td>
<td>Dismembered</td>
<td>30</td>
<td>157</td>
<td>2</td>
<td>15</td>
<td>100</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
Treatment Algorithm (Adult)

Outcomes Summary

<table>
<thead>
<tr>
<th>Technique</th>
<th>Pediatric success rates</th>
<th>Adult success rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open repair</td>
<td>90-100%</td>
<td>86-100%</td>
</tr>
<tr>
<td>Acucise</td>
<td>Limited use</td>
<td>52-81%²</td>
</tr>
<tr>
<td>Laser endopyelotomy</td>
<td>~67%</td>
<td>73-85%²</td>
</tr>
<tr>
<td>Antegrade endopyelotomy</td>
<td>72-92%³</td>
<td>67-88%</td>
</tr>
<tr>
<td>Laparoscopic Pyeloplasty</td>
<td>87-100%</td>
<td>88-100%</td>
</tr>
</tbody>
</table>
Outcomes Summary

- References:

Primary Treatment Failure

- Salvage = try the other option

- 72 adult patients
- Antegrade endopyelotomy
- Mean f/u = 88.5 mos
- 87.5% clinical & radiographic success
Primary Treatment Failure

- Salvage = try the other option

43 adult patients underwent open pyeloplasty after endopyelotomy failure
95% clinical & radiographic success

Post-treatment Follow-up

- Pediatric UPJO:
 - Serial U/S
 - Gradual improvement in hydro is the rule
 - <50% improve within 6 months of repair
 - 80% improve at 2 years
 - Monitor renal growth
 - Worsening hydro should prompt nuclear renogram
 - Indications for nuclear renogram
 - Worsening hydro on U/S
 - Poor renal growth on U/S
 - Persistent symptoms
Histologic Findings in UPJO

- Biopsy findings of kidneys with UPJO
 - Dilation of collecting ducts & Bowman’s space
 - Decreased # glomeruli
 - Interstitial fibrosis & inflammation
 - Global/segmental sclerosis
 - Cortical cysts
Summary

- Diagnosis
 - Kids:
 - U/S
 - VCUG
 - Renogram
 - Adults:
 - CTA
 - Renogram
 - ?retrograde
Summary

- Decision to treat:
 - Symptoms
 - Complications (stones, infection)
 - Declining renal function
 - U/S criteria = parenchymal thinning, contralateral hypertrophy
 - Renogram criteria = worsening split f’n, ?drainage curves, ?T½

Summary

- Treatment modality:
 - Kids:
 - Open > Endoscopic
 - Lap data emerging (esp. age 2+)
 - Adults
 - Lap = Open > Endoscopic
 - First line choice = discretion of clinician
 - Salvage
 - Pyeloplasty → Endoscopic
 - Endoscopic → Pyeloplasty
THE END