Evidence Based Urology
What is good evidence?

Kourosh Afshar MD, FRCSC, FAAP

Outline

• History
• Philosophy
• What is good evidence (hierarchy in EBM)?
• How to know the evidence is good (critical appraisal)?
• Where to look for Evidence?
• Evidence based health care.
Clinical problem

Doc should I circumcise my newborn son, I have heard it prevents urinary infection?

• Flip a coin
• Ask the local experts
• Follow your own opinion
• Look for evidence

Evidence Based Medicine: History

• Canadian led phenomenon
• 1970’s: McMaster
• Clinical Epidemiologists (Sackett, Haynes) → Critical appraisal & bringing results to bedside
• Integration in Residency Programs
• EBM: 1990
• Paradigm shift
Philosophy of EBM

• EBM is about solving problems

• EBM is not a panacea

• EBM is not a substitute for expert judgment

Philosophy of EBM

• Inadequacy of intuition, unsystematic clinical experience and pathophysiologic studies

• Lower value on authority than traditional medicine
 – Process of inference in human mind
 – Last case effect
 – Worst/best case effect
Principles of EBM

• Evidence is never enough:
 – Expert judgment
 – Identify the problem
 – Effectiveness/ Cost / Safety
 – Patient’s expectation and preference
 – Apply the evidence (particularize)

• Not all evidence is good evidence

Hierarchy of evidence

Don't accept your dog's admiration as conclusive evidence that you are wonderful.

Ann Landers
(1918 - 2002)
Hierarchy of evidence

• There is always evidence

• What is good evidence?

• Different type of classifications:
 – All based on methodology
 – Combining (SR and Metanalysis) studies: superior quality

Oxford Centre for Evidence-based Medicine Levels of Evidence (May 2001)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Systematic review (SR) of RCTs</td>
</tr>
<tr>
<td>1B</td>
<td>Individual RCT</td>
</tr>
<tr>
<td>1C</td>
<td>All or none cases</td>
</tr>
<tr>
<td>2A</td>
<td>SR of Cohort Studies</td>
</tr>
<tr>
<td>2B</td>
<td>Individual Cohort studies</td>
</tr>
<tr>
<td>2C</td>
<td>Outcome research, ecological study</td>
</tr>
<tr>
<td>3A</td>
<td>SR of case-control studies</td>
</tr>
<tr>
<td>3B</td>
<td>Individual case control</td>
</tr>
<tr>
<td>4</td>
<td>Case series</td>
</tr>
<tr>
<td>5</td>
<td>Expert opinion, physiologic studies</td>
</tr>
</tbody>
</table>
JAMA users’ guides to medical literature

- N of 1 RCT
- SR of RCT
- RCT
- SR of observational studies
- Single observational study
- Physiologic studies
- Unsystematic clinical experience.

N=1 randomized controlled trial

Analysis of results

No change
N=1 RCT

- Expensive
- Time consuming
- Only possible if:
 - Temporary effect of intervention
 - Non fatal
 - Chronic
 - Objective outcome assessment tool

Systematic Review and Meta-analysis

- Can be done separately
- Most common type of EBM search target
- Systematic review
 - Predefined protocol for database
 - Exclusion/inclusion criteria
 - Reproducible
- Meta-analysis
 - Combining the results of homogenous studies
 - Weighted average → average risk measure (OR, RR)
 - Subgroup analysis, Meta-regression to adjust for disparities
Pitfalls

• Garbage in, Garbage out

• Heterogeneity

• Publication bias:
 – Negative studies are less likely to get published

Funnel plot
Presentation of the results

SR/MA check list

- Systematic search?
- Good quality studies?
- Homogeneity?
- Weighted effect size?
Randomized controlled trials

• Gold standard for intervention effect
• Randomization:
 – Groups similar (in average) in all aspects except the intervention
 – No selection bias
 – May not happen in small sample size
 – If a factor is very important: stratified randomization
 – SHOULD BE CONCEALED

Randomized controlled trials

• Control group:
 – Hawthorne and placebo effect
 – Unpredictable outcomes
 – Predictable outcomes
 – Regression to the mean
Randomized controlled trials

- Blinding (masking)
 - To prevent bias
 - Difficult in surgical trials
 - 4 levels
 - Subjects
 - Investigators
 - Outcome assessors
 - Statistician

Randomized controlled trials

- Sound statistical methods
 - Adequate power
 - Correct analysis
 - Subgroup analysis
RCT checklist

- Randomization?
- Concealment?
- Blinding?
- Similar co-intervention?
- Adequate power
- Sufficient follow up?
- Intention to treat
 - Analysis according to randomization not completed treatment

Intention to treat

- Sample
 - Treatment N1
 - Lost to F/U
 - Side effects
 - cured/dead N2
 - Placebo N1
 - Lost to F/U
 - Side effects
 - cured/dead N2
Observational studies

- Cross sectional (prevalence)
- Cohort (incidence)
- Case control
- Nested case-control

Why Observational studies?

- RCT not possible:
 - Rare outcome
 - Harmful exposure: Unethical
 - Less time consuming
 - Less expensive

- 3 groups of men:
 - P Ca + ADT
 - P Ca – ADT
 - Age matched Control

- Single measurement Metabolic Syndrome
- Compared the prevalence
- Metabolic syndrome more common in ADT
Case control design

- Two groups of patients:
 - Chronic RF +
 - Healthy controls
- Retrospective search for Exposure (NSAIDS)
- 2 fold increase in risk of RF
Cohort design

Cohort study

- Two groups of men:
 - DM + EXPOSURE
 - DM –

- Followed for 2-4 years
- Outcome: Prostate cancer
- P Ca risk lower in diabetics
Pitfalls

- Bias
 - Sampling bias
 - Selection bias
 - Measurement bias

- Confounders (Confounding bias)

Confounders

- Confounder Smoking
- Exposure Coffee
- Outcome Bladder TCC
How are we doing in Urology

• 4 major Urology Journals
• 44% cohort, 29% cross sectional, 12% RCT
• 71% at least one statistical error
 – Wrong test for data type
 – Inappropriate use of parametric test
 – Multiple comparisons (65%)
 – Flawed multivariable analysis

Should all Urologists be EBM experts?

• NO
 – Time consuming task
 – Requires background in statistics and clinical research design
 – Not necessary for good practice
EB Urologist

• Basic knowledge
 – Residency programs
 – Workshops and courses
 – Internet
 – Self education (JAMA Users’ guides)

• Pre-processed / appraised literature
 – SR/MA Cochrane data base
 – EB databases: Trip database
 – EB Guidelines

ANSWER

• Circumcision reduces the risk of UTI.
 Given a risk in normal boys of about 1%,
 the number-needed-to-treat to prevent one
 UTI is 111.

 Singh-Grewal D, Macdessi J, Craig J.
 Circumcision for the prevention of urinary tract infection in boys: a
 systematic review of randomised trials and observational studies.
Enlightened skepticism