Male Incontinence and Urethral Slings

Blayne Welk
UBC Department of Urology Grand Rounds
Dec 17, 2008

Outline

- Current understanding of the male sphincter
- Post prostatectomy incontinence
- Current male slings
 - Retropubic Bulbourethral slings: where it all started
 - Bone anchored bulbourethral slings
 - Male TOT
- Future designs
- Conclusions
Urinary Incontinence

- A result of
 - Bladder pathology
 - Detrusor overactivity
 - Poor compliance
 - Sphincter pathology

Male sphincter

- Understanding of the male sphincter complex has evolved over time
- Challenges
 - Based on small number of cadaveric studies
 - Anatomic findings in children/fetuses applied to adults
 - Terminology
 - Majority of work done in German
Male sphincter

- Traditionally:
 - Internal sphincter (Bladder neck)
 - Prostatic muscular stroma
 - Intrinsic sphincter
 - Extrinsic sphincter

“Two morphologically related, but functional unrelated components”
1: Bladder musculature
2: Proximal internal SM sphincter
3: Distal SM sphincter/urethra
4: Rhabdosphincter
5: Prostatic portion rhabdosphincter

Anatomic Concepts
- Tapering
- Completeness
- Atrophy
Male sphincter

- Smooth muscle provides passive continence
 - Normal: holds urine at BN
 - Post TURP: holds urine at resection limit, where SM intact
 - Above the main component of the rhabdosphincter
 - Post posterior urethroplasty: holds urine at BN
 - Ext rhabdosphincter is resected
 - Post RRP Incontinence: resect too distal, injure SM, ext rhabdosphincter intact
 - Still have increased MUCP in UDS
 - Continence is maintained after curare injection into rhabdosphincter, or pudendal nerve block

Male sphincter

- Smooth muscle sphincter is redundant
 - Circular muscle fibers create maximal closure of urethra at
 - Bladder neck
 - Membranous urethra
Male sphincter

- Rhabdosphincter
 - Provides active continence
 - Contraction moves anterior urethral wall against rigid posterior plate (denonvilliers and rectourethralis)
 - Mix of fast and slow twitch fibers
 - Prostatic rhabdosphincter
 - Side to side contraction, important for ejaculation

Male sphincter

- Correlation with UDS
 - Continence is a function of the smooth muscle sphincter
 - Intact rhabdosphincter does not guarantee continence
 - Deficient rhabdosphincter doesn’t produce incontinence with an intact SM sphincter
 - SM sphincter can be 1/2 its normal length and maintain continence (1.5cm)
Post Prostatectomy Incontinence

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Pt num</th>
<th>Physician / Anon.</th>
<th>Subjective leak</th>
<th>Pad usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalona</td>
<td>1999</td>
<td>1328</td>
<td>Physician</td>
<td>N/A</td>
<td>8%</td>
</tr>
<tr>
<td>Zincke</td>
<td>1994</td>
<td>3170</td>
<td>Physician</td>
<td>N/A</td>
<td>5% (post-1998)</td>
</tr>
<tr>
<td>Stanford</td>
<td>2000</td>
<td>1291</td>
<td>Anonymous questionnaire</td>
<td>48%</td>
<td>21%</td>
</tr>
<tr>
<td>Kao</td>
<td>2000</td>
<td>1069</td>
<td>Anonymous questionnaire</td>
<td>66%</td>
<td>33%</td>
</tr>
</tbody>
</table>

8-12% of patients will have enough leakage after RRP to seek treatment for SUI.

Urinary incontinence has a significant detrimental effect on HRQOL.
Post Prostatectomy Incontinence

- Points of injury intraoperatively
 - Damage to NVB
 - SV dissection and damage to pelvic plexus
 - Injury to sphincter muscle/fascia tissues
 - Direct injury to sphincter fibers
 - Injury to sphincteric supports
 - Neuronal injury

Post Prostatectomy Incontinence

- Multifactorial
 - Destrusor instability 20-30%
 - Reduced bladder compliance
 - Reduced bladder sensation
 - Impaired bladder contractility
 - Intrinsic sphincter dysfunction
 - Reduced functional urethral length
 - Decreased MUCP
 - Bladder neck contracture
Post Prostatectomy Incontinence

- Are these changes a consequence of surgery, or due to:
 - Long term BOO
 - Age related changes
 - Often these changes are asymptomatic and only detected on UDS

Post Prostatectomy Incontinence

<table>
<thead>
<tr>
<th>Authors, year [ref]</th>
<th>Type of study</th>
<th>No. of patients</th>
<th>Follow-up (mo)</th>
<th>DO No (%)</th>
<th>RBC No (%)</th>
<th>Impaired detrusor contractility No (%)</th>
<th>BOO No (%)</th>
<th>GSI No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holbrom et al, 1989 [22]</td>
<td>Prospective</td>
<td>24</td>
<td>6</td>
<td>—</td>
<td>19 (100)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Leach and Yuan, 1992 [27]</td>
<td>Retrospective</td>
<td>71</td>
<td>40</td>
<td>6 (25)</td>
<td>5 (7)</td>
<td>—</td>
<td>—</td>
<td>25 (35)</td>
</tr>
<tr>
<td>Kleinman et al, 1999 [23]</td>
<td>Retrospective</td>
<td>25</td>
<td>12</td>
<td>—</td>
<td>5 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Gacanzan et al, 2004 [56]</td>
<td>Prospective</td>
<td>25</td>
<td>12</td>
<td>—</td>
<td>5 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Hooker et al, 2005 [26]</td>
<td>Prospective</td>
<td>25</td>
<td>12</td>
<td>—</td>
<td>5 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Khed and Clemens, 2005 [36]</td>
<td>Retrospective</td>
<td>25</td>
<td>12</td>
<td>—</td>
<td>5 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Majors et al, 2005 [26]</td>
<td>Prospective</td>
<td>25</td>
<td>12</td>
<td>—</td>
<td>5 (20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Ref = reference; DO = detrusor overactivity; RBC = reduced bladder compliance; BOO = bladder outlet obstruction; GSI = genuine stress incontinence; — = not reported.

2-77% 10-20% 8-70%
Post Prostatectomy Incontinence

- Bladder compliance
 - Perivesical inflammation/fibrosis
 - Alteration of bladder wall geometry
 - Disruption of detrusor innervation

Post Prostatectomy Incontinence

- Detrusor Overactivity
 - Vesicourethral reflex
 - Post surgical change to bladder
 - Recruitment of new spinal circuits in patients with BOO
Post Prostatectomy Incontinence

- Some evidence UDS can predict post RRP incontinence
- 1/3 patients had pre existing deficit
- These patients had 39% SUI postop (vs 3%)

Aboseif Urol Int 1994
Post Prostatectomy Incontinence

- **UDS Conclusions**
 - Detrusor dysfunctional rarely the sole diagnosis
 - DO as a new finding variable, 2-75%
 - Impaired compliance 8-39% (de novo 50%)
 - Impaired contractility in 30-40% (de novo 50%)
 - ISD usually present, but is the sole diagnosis in only 25-50%
 - In select cases preop UDS may help predict etiology and those at high risk of postop urinary complications

- **Who gets treatment?**
 - SUI that is persistently bothersome despite 12mon of active conservative treatment
- **Conservative treatment**
 - Fluid restriction
 - Medical management (DO)
 - Pelvic floor exercises
 - Periurethral bulking agents
Leaky treatment option #1

Geezer Squeezer Klip
$19.95

Leaky Treatment option #2
Leaky Treatment option #2

- High level of success across all levels of incontinence for 30yrs
 - Success rates 75-90%
 - Long term followup available
- Revision rate of 15-20% at 5yrs
 - Mechanical failure 8%/lifetime
 - Infection rate 3%
 - Erosion 0-13%

Comiter, Nat Cl Prat Urol 2007

Option #3
Male sling: Introduction

- Goal
 - Apply sufficient urethral occlusive pressure to prevent leakage, but to allow normal voiding with detrusor contraction
Male sling: Introduction

- Designed with hope to overcome some of the disadvantages of the AUS
 - Infection
 - Urethral erosion
 - Need for device manipulation
 - Expense
 - Physiological voiding
 - Need for future surgery

Male sling: Introduction

- Principles
 - Adequate tension
 - Well designed synthetic materials
 - Adequate sling fixation
 - SUI treated by increasing urethral resistance
Male sling: Introduction

- Patient selection
 - Mild to moderate SUI
 - No periurethral fibrosis
 - Appropriate detrusor voiding pressures
 - Not dependent on manual dexterity

Original Male sling

- Conceptualised in 1960-70’s
 - Kaufmann III
 - Silicone gel filled hemispherical prosthesis with two polyurethane straps used to compress urethra
 - Kishev
 - Prosthetic under bulbar urethra tensioned with sutures through rectus fascia
- Recent slings are based on the original concept of urethral compression
- Initial slings used allograft/xenograft, which did not maintain long term tension
Retropubic Bulbourethral Sling

- Mesh/autologous fascia suspended with sutures over rectus fascia
- Studied with multiple etiologies and degrees of SUI
Retropubic Bulbourethral Sling

Xu, Eur Urol 2006

Retropubic Bulbourethral Sling

John, JU 2004
Retropubic Bulbourethral Sling

- Current principles of a successful Bulbourethral sling
 - Synthetic graft (necessary for long term tension)
 - Wide area of urethral compression (prevent erosion)
 - Appropriate tension (via urethral filling P, VLPP under spinal, with an early adjustment)

- Complications
 - Perineal pain/numbness
 - Erosion
 - Failure

Retropubic Bulbourethral Sling

- Medium term results
 - Schaeffer’s bolster technique
 - 95 men with PPI (5-10 pads/day)
 - 4yr mean followup

Stern, JU, 2005
Bone Anchored Bulbourethral Sling

- Bulbourethral sling with bone anchoring (InVance, AMS)
 - Marketed 2001
 - Minimally invasive, perineal procedure
 - 6 screws with battery powered drill attached to prolene suture
 - Silicone coated polyester mesh

Bone Anchored Bulbourethral Sling

- Bone anchored male sling is indicated for mild-moderate SUI (1-3pad/day)
- Contraindicated in
 - Immunocompromise
 - Renal failure
 - UTI
 - Osteomyelitis
- Others:
 - Risk of TCC
 - Urethral stricture
 - DO, detrusor hypocontractility, reduced capacity
 - Stone disease requiring repeat endoscopic treatments
Bone Anchored Bulbourethral Sling

- 48 patients, primarily with PPI
- Inclusion criteria
 - Detrusor voiding pressures >60cmH20
 - Normal voiding time
 - Absence of BOO
 - Normal cysto
- Treated with InVance, tensioned to 60cmH20

Comiter, Neuro Urodyn 2005

Bone Anchored Bulbourethral Sling

- Median F/U 4yrs
- Complications
 - 1 infection (erosion)
 - 7 scrotal pain/numbness (gone at 3mon)
 - 2 screw dislodgements
Bone Anchored Bulbourethral Sling

<table>
<thead>
<tr>
<th>Series</th>
<th>Year</th>
<th>Patients</th>
<th>F/U (mon)</th>
<th>Success</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madjar</td>
<td>2001</td>
<td>14</td>
<td>12</td>
<td>86% dry, 14% improved</td>
</tr>
<tr>
<td>Fassi-Fehri</td>
<td>2004</td>
<td>22</td>
<td>3</td>
<td>50% dry, 23% improved</td>
</tr>
<tr>
<td>Cerqueira</td>
<td>2005</td>
<td>10</td>
<td>9</td>
<td>80% dry, 20% improved</td>
</tr>
<tr>
<td>Rajpurkar</td>
<td>2005</td>
<td>46</td>
<td>24</td>
<td>37% dry, 37% improved</td>
</tr>
<tr>
<td>Castle</td>
<td>2005</td>
<td>42</td>
<td>18</td>
<td>16% dry</td>
</tr>
<tr>
<td>Gallagher</td>
<td>2007</td>
<td>31</td>
<td>15</td>
<td>75% dry</td>
</tr>
<tr>
<td>Guimaraes</td>
<td>2008</td>
<td>62</td>
<td>28</td>
<td>65% dry, 23% improved</td>
</tr>
<tr>
<td>Giberti</td>
<td>2008</td>
<td>42</td>
<td>41</td>
<td>62% dry, 8% improved</td>
</tr>
</tbody>
</table>

Complications
- Hematoma
- Retention
- Sling infection
- Erosion
- Initial/prolonged perineal pain
- Bone screw dislodgement
- De novo detrusor overactivity
Bone Anchored Bulbourethral Sling

- Will long term compression of the urethra cause altered bladder compliance and detrusor function?
 - Evidence from Schaeffer’s series 66 men
 - Unobstructed voiding on VUDS
 - Increased VLPP
 - Evidence from Comiter’s series 22 men
 - RLPP increased from 20 to 60cmH2O
 - Flow rate 18 vs 19mL/s postop
 - Detrusor pressure 40 vs 46cmH2O
 - No de novo UI, BOO
 - 4 patients de novo DO (asymptomatic)

Bone Anchored Bulbourethral Sling

- Consider alternative treatment in patients with
 - Radiation
 - BN contracture
 - Previous incontinence treatment
- Likely will decrease pad use, but will not cure
Bone Anchored Bulbourethral Sling

- Does a failed bone anchored sling prevent successful AUS?
 - 11 patients, failed sling
 - RT
 - Absorbable sling
 - Severe incontinence
 - Prior failed AUS

Surgical approach
- NonRT patients
 - Perineal incision
 - Divided sling
 - Placed cuff
- RT patients/infection
 - Transverse perineal incision
 - Urethral cuff placed distal

Fisher, Urol 2007

<table>
<thead>
<tr>
<th>Table 2. Outcomes of AUS after failed male sling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity of incontinence after AUS (n)</td>
</tr>
<tr>
<td>Dry (0 pads)</td>
</tr>
<tr>
<td>Mild (1 to 2 pads/day)</td>
</tr>
<tr>
<td>Moderate (3-5 pads/day)</td>
</tr>
<tr>
<td>Severe (>5 pads/day)</td>
</tr>
<tr>
<td>Mean UCLA/RAND scores (incontinence section)</td>
</tr>
<tr>
<td>Patient satisfaction (%)</td>
</tr>
<tr>
<td>Infections requiring removal</td>
</tr>
<tr>
<td>Revisions</td>
</tr>
</tbody>
</table>

Abbreviations as in Table 1.
Bone Anchored Bulbourethral Sling

- Patient satisfaction
 - Pad use decreases (3.7 to 1.3)
 - 37-38% pad free
 - Significant improvement in
 - MUDI and MUSIQ scores
 - UCLA/RAND questionnaire
 - 70-75% patients satisfied with procedure using validated QOL measures at 15mon

Gallagher, Urol 2007
Rajpurkar, Eur Urol 2005

Male TOT Sling

- The male TOT (AdVance, AMS)
 - Marketed in 2006
 - Indicated for mild to moderate SUI secondary to RRP/TURP
 - Contraindicated
 - UTI
 - Coagulopathy
 - Immunocompromise
 - Renal failure/BOO
Male TOT Sling

- Different paradigm: suspension vs compression
 - Damage to posterior urethra/supporting structures
 - Residual sphincter function implies urethral prolapse and dorsal sphincteric urethral descent
 - Dorsal surface of the proximal bulb is rotated proximally utilizing a broad surface on the bulb
 - Prolapsed dorsal surface of the sphincteric urethra is indirectly supported without direct compression
 - “Augments residual function”

Gozzi & Rehder, Abstract at the SIU, 2005

Male TOT Sling

- Force vectors differ
 - Limited force perpendicular to sling
Male TOT Sling

- **Technical points**
 - Preop cysto demonstrating coaptation of bulb with perineal pressure predicts success
 - Position: low lithotomy position
 - Bulbospongiosus muscle should be divided
 - Urethral bulb should be mobilised until proximal movement is possible
 - Mesh should be fixed to bulb
 - Tensioning: in cadaveric studies bulbar urethra elevated 3-4cm without obstruction
 - Tape ends fixed in sub cut tissue
 - Postop limit leg spreading/lifting

Rehder, Int Braz J Urol. 2007

Male TOT Sling

- 20 men with SUI, and a degree of residual sphincter function
- **UDS**
 - Membraneous urethral length increased from 3 to 17mm
 - MUCP increased from 13 to 86
 - Qmax unchanged
- **MRI**
 - Ventral urethral bulb moved proximally into pelvis

Rehder, Eur Urol 2007
Male TOT Sling

- 2 patients with perineal discomfort
- 1/20 reported dissatisfaction with procedure
- TOT sling “gave way” with activity in one patient
- Pad usage at 6 wk followup (stable in 18/20 patients)

<table>
<thead>
<tr>
<th>Daily pad usage</th>
<th>No. of patients (%) reporting pad use at baseline</th>
<th>No. of patients reporting pad use post-operatively</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>–</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>1-2</td>
<td>2 (10%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>3-4</td>
<td>5 (25%)</td>
<td>6 (30%)</td>
</tr>
<tr>
<td>5-6</td>
<td>9 (45%)</td>
<td>–</td>
</tr>
<tr>
<td>7-8</td>
<td>3 (15%)</td>
<td>–</td>
</tr>
<tr>
<td>9-10</td>
<td>1 (5%)</td>
<td>–</td>
</tr>
</tbody>
</table>

Male TOT Sling

- Theoretical advantages
 - Less urethral pressure to prevent erosion
 - Perineal procedure, avoids scarred retropubic space
 - Easier to place than the InVance, avoid potential complications of bone screws
 - TO pathway safe in cadaveric models, well established in females
Other Male Sling Designs

- Adjustable bulbourethral sling (Argus, Promedon SA)

Other Male Sling Designs

- Perineal sling with tissue expander
Other Male Sling Designs

- Ventral Urethral Elevation + (Levera, Caldera Medical)
 - Combines elevation and compression of urethra

Conclusions

- Male incontinence is a significant problem
 - 10% patients after RRP seek treatment
 - RT, TURP, Orthotopic neobladder, neurogenics
- Revived interest in the male sling due to success in females and development of reliable synthetics
- Consider in patients
 - Failed conservative therapy for >12mon
 - Significant bother from mild-mod SUI (1-5 pad/d)
 - UDS: Adequate detrusor pressure, without BOO, no DO
 - Minimal periurethral fibrosis (RT, perineal Sx)
 - Inability to manipulate AUS
 - Can’t afford AUS
 - Unable to tolerate possible revision of AUS
Conclusions

• For workup consider
 • UDS
 • Detrusor function
 • Capacity
 • DO (make sure it is treatable first)
 • Cysto
 • R/O BN contracture, stricture
 • Ensure coaptable urethra
 • Ensure some sphincter function

Conclusions

• Retropubic bulbourethral suspensions
 • Urethral compression with synthetic
 • Studied in mild to severe PPI
 • Risk of urethral erosion, perineal pain, bladder perforation
 • Medium term outcomes
 • 4yrs 81% cured/improved
Conclusions

- Bone anchored bulbourethral sling
 - Urethral compression with fixation to pubic bone
 - Perineal procedure, “minimal invasive”
 - Studied in mild to moderate PPI
 - Risk of erosion, bone complications, generally short term perineal pain
 - Mostly short term F/U, small series, some medium term FU
 - 4yrs about 60% “dry”
 - 70-75% are satisfied, have improved QOL
 - Does not preclude AUS placement with failure

- Male TOT sling
 - Urethral elevation and compression
 - Perineal procedure, easier than placing bone screws, familiar to urologists
 - Studied in mild to mod PPI
 - Risk of erosion theoretically less, risk of pain theoretically less, no bone complications
 - New technique, with few published series
 - Safe and effective with short term followup
Future directions

- Many procedures performed, few series published!
 - 18,000 InVance (2001)
 - 10,000 AdVance (2006)
- RCT
 - 1-3pad leakage in motivated patient
 - Randomised to AUS vs sling
 - 5yr followup
- Future directions
 - Other populations: neurogenics, orthotopic neobladders
 - Long term followup and better understanding of long term efficacy and risks